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Abstract

Software is ubiquitous in nearly all aspects of human life, including safety-
critical activities. It is therefore crucial to analyze programs and provide
strong guarantees that they perform as expected. Automated theorem
provers are increasingly popular tools to assist in this task, as they can be
used to automatically discover and prove some semantic properties of pro-
grams. This thesis explores new ways to use automated theorem provers
for first-order logic in the context of program analysis and verification.

Firstly, we present a first-order logic encoding of the semantics of
imperative programs containing loops. This encoding can be used to
express both functional and temporal properties of loops, and is particu-
larly suited to program analysis with an automated theorem prover. We
employ it to automate functional verification, termination analysis and
invariant generation for iterative programs operating over arrays.

Secondly, we describe how to extend theorems provers based on the
superposition calculus to reason about datatypes and codatatypes, which
are central to many programs. As the first-order theory of datatypes and
codatatypes does not have a finite axiomatization, traditional means to
perform theory reasoning in superposition-based provers cannot be used.
We overcome this by introducing theory extensions as well as augmenting
the superposition calculus with new rules.
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Chapter 1

Introduction

Computer systems are now used in a vast array of human activities, from
mundane tasks to safety-critical functions. In many of those applications,
software faults can have important negative consequences, either financial
or human. Just as computer systems have become more prevalent, they
have also become more complex. Avoiding faults in software is more
necessary than ever, but also more difficult.

Traditionally, the goal of detecting and avoiding software faults has
been accomplished with systematic testing. By running a program from
a pre-determined configuration, it is relatively easy to check that the
result produced conforms to the intent of the developer. However this
approach suffers from a major limitation, famously described by Dijkstra:
“Program testing can be used to show the presence of bugs, but never to
show their absence.” Furthermore, testing can only cover a finite number
of situations, whereas even moderately complex programs can run in an
infinite number of different ways. In order to achieve a higher degree of
safety, it is necessary to go beyond testing, and to instead prove that a
program is correct, by use of formal methods based on the theoretical
foundations of programming.

Formal methods have been studied for more than half a century [44,52,
67,88,124]. They offer various mathematical representations of programs
and means to prove some properties of these representations. By using
abstract reasoning, formal methods can ensure that a program behaves
as expected over an infinite domain of input values, and thus help ensure
a degree of software quality that is not achievable with mere testing.
Despite the higher assurance granted by formal methods, they have, for
a long time, only been used on small examples. This is in part because
these methods are often hard to adopt, and remain the prerogative of
experts. Besides the technical difficulty, the sheer amount of work needed
to prove the correctness of large programs can be overwhelming.

In order to overcome these obstacles, we need assistance in the form
of tools to automate (parts of) the proving process. Automated theorem
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proving – the use of automatic methods to carry out mathematical rea-
soning and prove (or disprove) logical statements – has a history that
precedes the advent of computers. Today, it remains an active field of
research that takes advantage of increased hardware capabilities as well
as theoretical and algorithmic developments to push the boundaries of
what can be proven by computers. Automated theorem provers can be
used to reason about all sorts of mathematical questions, and they are
particularly well suited to problems of program verification, which often
require proving a very large number of relatively simple logical asser-
tions. Proving properties of programs is a challenging task that cannot
be fully automated. Nevertheless, automated systems are able to find
simple proofs without human guidance, and to provide some assistance
in more complex problems. In the context of program verification, such
tools can help reduce the work required to prove correctness, and make
formal methods more viable.

Increasing the success rate of automated theorem provers for program
verification requires a concerted effort between the users of provers and
their developers. The former must make sure that the semantic repre-
sentations of programs are suitable for theorem provers and exploit their
strengths. The latter have to provide features to reduce the burden of en-
coding these representations, and leverage domain knowledge to increase
the performance of provers. This thesis explores both of these avenues of
research.

1.1 Deductive Program Analysis

1.1.1 Abstractions of Programs

A natural way to give a precise description of a programming language
is to describe, from a computational point of view, how its different
syntactic constructs operate. This style of description is called operational
semantics [71, 107].

The nature of the description varies greatly with that of the language.
For example, a functional language will typically be characterized by the
rewrite rules that govern the evaluation of expressions. For an imperative
programming language, we may instead define the effects of its commands
on some idealized memory model. In its simplest form, this memory model
will be a mathematical structure mapping program locations to values.
Then an assignment can be defined as an operation that takes a program
state (including the mapping) and returns an updated program state
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with a modified mapping. A precise description of a real programming
language will of course require a more complex model [18].

The advantages of operational semantics are based on a close corre-
spondence to the implementation of the language. Programmers will find
the style quite natural and informative, while language developers can
use an operational description of the semantics to implement an inter-
preter with minimal effort. This style of semantics is also needed in the
development of verified compilers [86,93].

The low level of abstraction of operational semantics means that the
mathematical representation of a program includes a number of details
that may not be relevant to the task of program verification, which is
often less concerned with how a program computes than what. Denota-
tional semantics takes a higher-level view of a program, describing it as
a mathematical object, for example a partial function (or more generally
a relation) mapping input to output. This style of semantics can be very
useful to give a description of language features that cannot be fully de-
scribed using a computational representation, such as non-determinism or
concurrency. It is also useful to compare programs in different languages,
as the abstraction is independent of the syntax of the program.

Denotational semantics abstracts many of the computational details
of the programming language, but this often requires more advanced
mathematical concepts that those used for operational semantics. For the
representation of loops and recursive functions, denotational semantics
makes use of fixed-point constructions. This representation is not only
non-computational, but it is also a complex mathematical notion about
which it is difficult to reason automatically.

1.1.2 Program Semantics for Verification

A third way to abstract programs is axiomatic semantics. Here, it is
not the program itself that is represented, but rather its effect on logical
assertions about the program states. Axiomatic semantics is particularly
suited to program verification, where assertions are used to specify the
intended behavior of a program. The most famous example of axiomatic
semantics is Hoare logic [67], whose central syntactic feature is the Hoare
triple

{P}π {Q}

where P and Q are logical assertions about program states, and π is a
program. Informally, such a triple can be understood as “if the program
state satisfies the assertion P before the execution of π, and π terminates,
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then the state satisfies the assertion Q.” For each program construct, an
axiomatic rule describes how the construct relates to assertions. For ex-
ample, program composition is described by a rule that takes for premises
triples about two programs, and combines them to infer a triple about
their composition:

{P}π1 {Q} {Q}π2 {R}
{P}π1;π2 {R}

Atomic commands correspond to rules without premises. For example
assignments can be axiomatized as:

{P [x← e]}x := e {P}

where P [x← e] denotes the substitution of all occurrences of the variable
x by the expression e in the formula P . For complex program constructs,
it may not be easy to convince oneself that such axioms provide a correct
description. For this reason, it is common to use operational semantics
as a basis to justify the soundness of each rule [42].

Besides the rules describing program constructs, the rule of conse-
quence allows the generalization of triples according to the notion of
consequence in the assertion language:

P =⇒ P ′ {P ′}π {Q′} Q′ =⇒ Q

{P}π {Q}
The rules above form a calculus that can be used to prove that a

Hoare triple is valid, thus guaranteeing that the program satisfies a given
specification. Most of the inference rules in this calculus require the
use of intermediate lemmas. For example, in the rule for composition
above, the assertion Q is present in the premises but not the conclusion.
Consequently, the completeness of the calculus depends on

(i) the axioms themselves;

(ii) the existence of a complete deductive system for assertions intro-
duced by the consequence rule;

(iii) the ability of the assertion language to express the required inter-
mediate lemmas.

Cook [42] defined a suitable notion of relative completeness that isolates
those requirements, and proved that under assumptions (ii) and (iii), a
complete system could be obtained for a Turing-complete language. How-
ever this is not always the case, and many naturally occurring language
constructs prevent the existence of such a system [35].
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The use of intermediate lemmas in the rules makes the calculus poorly
suited to automated proof search. This problem was partially solved by
Dijkstra [51], who provided a calculus based on predicate transformers to
prove the correctness of programs. A predicate transformer for a given
program is a function on assertions. For example we can make use of
a predicate transformer taking a program π and an assertion Q, and
returning the weakest (i.e., most general) condition that is required to
hold before the exectution of π for Q to be true after that execution. To
prove program correctness, it remains only to show that the actual pre-
condition given in the specification is at least as strong as the condition
returned by the predicate transformer:

P =⇒ pre(π,Q)

Equivalently, it is possible to use predicate transformers based on the
strongest post-condition of a program [101].

1.1.3 Loop invariants

The predicate transformer calculus avoids the issue of intermediate lem-
mas for most program constructs. For example for the composition of
programs, the weakest pre-condition can be computed in two steps:

pre(π1;π2 , Q) = pre(π1,pre(π2, Q))

However the weakest pre-condition is generally not computable in the
presence of loops. The solution adopted by the predicate transformer
calculus is to use a specific kind of intermediate lemma, a loop invariant.
An invariant for a given loop is an assertion whose truth is preserved by
any execution of the loop body. Evidently, if such an assertion is true
in the state where a loop execution starts, it also holds when the loop
terminates. This justifies the definition of the Hoare rule for loops:

{I ∧ C}π {I}
{I}while C do π {I}

The definition of a predicate transformer for loops relies on those loops
being annotated with an invariant, which must be provided by the pro-
gram developer. Coming up with an arbitrary invariant is not difficult:
the always true and always false formulas > and ⊥ fit the definition,
for any program. The challenge is to find an invariant that is strong
enough to imply the post-condition to verify, while also being implied
by the pre-condition. In that sense, the predicate transformer calculus
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requires a step of “invention” to prove the correctness of programs with
loops, similar to the act of finding an inductive hypothesis to perform a
proof by induction. In program analysis as in inductive theorem proving,
the necessity to come up with new formulas during the proving process
hinders automation.

Given the undecidability results for properties of Turing-complete lan-
guages, finding a fundamental obstacle to automation is not surprising.
Nevertheless, it is possible to use automated methods to generate some
invariants, and increase the degree to which program verification can be
automated. Some of those methods are in some sense complete, but im-
pose strong restrictions on the nature of programs and invariants that are
targeted. For example there exist methods to generate only polynomial
invariants [79] or that require user-provided templates to impose syntac-
tic constraints on the invariants [39,63] generated. Other techniques are
heuristic in nature and instead attempt to generate useful invariants on
a best-effort basis. They are very useful for commonly used but mathe-
matically complex programs such as loops iterating over arrays [45,82].

1.1.4 First-Order Logic for Program Verification

In addition to a representation of the program semantics, an appropriate
mathematical language must be chosen. Even axiomatic semantics, where
logical statements are at the center of the abstraction, is formulated in a
way that is largely independent of the language used for assertions. The
choice of a logical language is largely a balancing act between expressiv-
ity and ease of reasoning, especially in the context of automation. For
example, propositional logic is decidable, and there exists efficient tools
to reason about its problems. However it lacks the ability to describe
infinite domains, a requirement for many tasks of program verification.
First-order logic arguably offers the right level of expressivity to reason
about most programs, thanks to the ability to quantify over the values
manipulated by those programs. This type of quantification is often a
necessity to express meaningful properties of programs. This added ex-
pressivity comes at a cost: first-order logic is not decidable, but merely
semi-decidable.

Higher-order logics provide even more expressivity, but in general
automated tools to reason about them [17, 28] do not perform as well
as their first-order counterpart, especially on large problems. Even for
programming languages that feature higher-order functions, first-order
logic is often sufficient to express most interesting properties. One level
of universal quantification over functions can be simulated by using unin-
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terpreted function symbols. Deeper higher-order reasoning (e.g., proving
the existence of a function) is rarely needed.

Other approaches use logics that are especially tailored to describe
properties of programs. For example, the language of separation logic [116]
includes operators specifically used to describe properties of memory. Sim-
ilarly, logics with modalities can be used to describe temporal properties of
programs [108] or to embed program fragments in logical statements [65].
Matching logic [121] offers a way to reason directly about the operational
semantics of programs. Automating reasoning in these logics usually
necessitates the development of new techniques and tools. In contrast,
deductive reasoning in first-order logic is a well studied topic, that can
be carried out by efficient tools.

1.2 First-Order Theorem Proving

In order to best employ automated theorem provers for program analysis,
it is necessary to understand how they operate. In this thesis, we focus
on saturation based theorem provers, which work by refutation: checking
the validity of a conjecture, or its entailment by axioms, is reduced to
checking the unsatisfiability of a sentence.

Early methods for refutation in first-order logic [48, 109] work by
enumerating the ground instances of a (Skolemized) sentence until an
inconsistent instance is found. Checking the consistency of a ground
instance is a problem of propositional logic, and therefore decidable. That
technique is a direct application of Herbrand’s theorem, which guarantees
that the process will terminate if the sentence is unsatisfiable. Since the
enumeration depends on the signature of the problem rather than the
sentence itself, the search for a refutation is undirected, and therefore
very inefficient.

A better approach is to use the structure of the problem to find
a refutation. This is the goal of saturation, which works on a clausal
representation of the sentence. Inferences are performed among the set
of clauses, the conclusion added to the set and the process iterated until
(a) the empty clause is derived, yielding a refutation or (b) no more
inferences can be performed, i.e., the set is saturated. If the calculus
used is refutationally complete, and if a fair strategy is used (so that no
inference can be delayed indefinitely), saturation of an unsatisfiable set
of clauses will eventually terminate in (a). Termination in (b) indicates
that the set of clauses is satisfiable, but because first-order logic is semi-
decidable, saturation does not always terminate on satisfiable sets.
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1.2.1 Resolution

A refutationally complete calculus was proposed by Robinson [119], who
leveraged term unification to extend the principle of propositional resolu-
tion to first-order logic.

In order to present the calculus, let us fix some definitions. An atom
is a formula of the form P (t1, . . . , tn), where P is a predicate symbol and
t1, . . . , tn are terms. A literal is a positive or negative occurrence of an
atom, and a clause is a finite disjunction of literals, viewed as a multiset.
Terms occurring in clauses may feature variables (denoted x, y, z . . . ) that
are interpreted as universally quantified. A substitution is a function
from variables to terms. Application of substitutions to variables (and by
extension, to terms, literals and clauses) is denoted in postfix notation. A
substitution θ is a unifier of s and t if sθ = tθ. Moreover, if every unifier
of s and t is an instance of θ, then θ is said to be a most general unifier
(mgu).

The resolution rule is as follows:

L ∨ C ¬L′ ∨ D Res
(C ∨ D)θ

where θ is an mgu of the literals L and L′. Resolution is a generalization
of the principle of modus ponens. It finds contradicting parts of two
clauses and combines the remaining literals to form a new clause, the
resolvent. Like the enumeration method, first-order resolution instanti-
ates the clauses, by means of a unifier. A crucial difference is that the
instantiation is partial: the use of an mgu ensures that the clauses are in-
stantiated in the most general way required to obtain a contradiction, and
no further. This can be seen as combining the two steps of the enumer-
ation method (generating instances, and testing them for inconsistency)
in a single operation.

In addition to the resolution rule, the calculus also includes the fac-
toring rule to remove unifiable literals occurring in the same clause

L ∨ L′ ∨ C Fact
(L ∨ C)θ

where θ is an mgu of L and L′.
To prove the refutational completeness of the calculus, we first focus

on the case where all clauses are ground. The proof is obtained by the
contrapositive: given a saturated set of ground clauses N that does not
contain the empty clause, the set is proven satisfiable by the construction
of a Herbrand model. We assume a total order ≺ on literals and obtain,
by the multiset extension, an order on clauses. The construction of the
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model starts with an empty Herbrand interpretation – where all atoms
are false – which is then iteratively enriched by considering the clauses in
the order defined above. If a clause is not satisfied by the interpretation,
its maximal literal must occur positively, so the clause has the form L∨C
and C is not satisfied by the interpretation. We can add L to the Herbrand
model without falsifying any of the clauses considered before. This can be
proven by contradiction: if such a clause were falsified, it would have the
form ¬L∨D, with D not satisfied by the interpretation. The two clauses
form the premises of a resolution inference, and since the set N is closed
under resolution, it must contain the conclusion C ∨D. Furthermore, the
conclusion is smaller that the premises, so it must be satisfied by the
model constructed so far, a contradiction.

Having proven the completeness of the calculus on ground clauses, the
proof can be extended to also cover the case of clauses containing vari-
ables. This is accomplished by an argument of lifting, which is essentially
an application of Herbrand’s theorem in the context of clausal formulas.
Given that a Herbrand interpretation is a model of a set of clauses if and
only if it is a model of all of its ground instances, we can prove the satisfi-
ability of a set of clauses by constructing a Herbrand model of its ground
instances, as we have already demonstrated. Perhaps surprisingly, most
of the effort required to prove the completeness of first-order resolution
is spent on the ground (i.e., propositional) case.

For the model construction to be correct, the set of ground instances
must be saturated. To ensure this, we must be able to lift every inference:
if an inference can be performed between ground instances of some clauses,
it must be an instance of an inference that is also possible between those
first-order clauses. This condition holds for all resolution and factoring
inferences, so the saturation of the set of first-order clauses implies the
saturation of the set of its ground instances.

1.2.2 Paramodulation

In many problems of first-order logic, the equality predicate (which we
denote ≈) plays an central role. The equality predicate can be finitely
axiomatized, so that first-order equality problems can be dealt with using
resolution, by including the axioms in the set of clauses to saturate. This is
the standard approach to perform theory reasoning in first-order theorem
provers.

This presents many drawbacks. Firstly, the axiomatization of equality,
although finite, requires a large number of sentences. Along with the three
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properties of equivalence

∀x. x ≈ x

∀xy (x ≈ y =⇒ y ≈ x)

∀xyz (x ≈ y ∧ y ≈ z =⇒ x ≈ z)

the axioms must also describe the monotonicity of equality under functions
and predicates. For every n-ary function symbol f we have

∀x̄ȳ (x1 ≈ y1 ∧ · · · ∧ xn ≈ yn ⇒ f(x1, . . . , xn) ≈ f(y1, . . . , yn))

and likewise, for every predicate symbol P

∀x̄ȳ (x1 ≈ y1 ∧ · · · ∧ xm ≈ ym ∧ P (x1, . . . , xm) =⇒ P (y1, . . . , ym))

Thus, the axiomatization requires a number of sentences linear in the size
of the problem signature. More importantly, the properties of equality
mean that positive occurrences of the equality predicate are extremely
prolific: they can be used to infer a very large number of clauses, few of
which will eventually be used in the refutation proof. For this reason, the
idea of using a finite axiomatization of equality together with a resolution
based prover is very impractical: for all but the simplest problems, the
search space quickly becomes too large for proofs to be found.

A possible improvement is to treat ≈ as part of the logical language
(rather than the problem signature) and use dedicated rules to capture
its properties. Reflexivity is captured by the equality resolution rule

s 6≈ s′ ∨ C
EqResCθ

where θ is an mgu of s and s′.
The key component of the calculus that captures the remaining prop-

erties is the paramodulation rule [138]:

t ≈ s ∨ C [¬]v[t′] ≈ u ∨ D
Sup

([¬]v[s] ≈ u ∨ C ∨ D)θ

where t′ is not a variable and θ is an mgu of t and t′. By [¬] we denote
the fact that the rule may be applied to either positive or negative literals,
the literal in the conclusion having the same polarity as the one in the
right premise.
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The completeness of the paramodulation calculus can be proven in
the same fashion as for resolution. Since we assign a specific interpre-
tation to the equality predicate, standard Herbrand interpretations are
impractical. Instead, we now use a term rewriting system R. We assume
a simplification order ≺ on terms, i.e., an order that:

(i) is compatible with term operations: for any terms s, t, u and any
term position p, s ≺ t implies u[s]p ≺ u[t]p;

(ii) is closed under substitution: for any terms s and t and any substi-
tution θ, s ≺ t implies sθ ≺ tθ;

(iii) has the subterm property : for any terms s and t, if s is a proper
subterm of t then s ≺ t.

These properties ensure that the order is well founded. Furthermore, ≺
must be total on ground terms. Each equality atom added to the system
can then be oriented and interpreted as a rewrite rule. A ground literal
s ≈ t is true in this interpretation if and only if the pair (s, t) belongs
to the rewrite relation corresponding to R, denoted s

∗←→R t. By the
properties of the simplification order, this is the case only if there exists
a term u such that s +−→R u and t +−→R u, that is, all ground terms that
are equal in the model defined by R have a unique normal form.

For the ground case, the proof of completeness follows the same pattern
as for the resolution calculus. One complication is that it is more difficult
to guarantee that the addition of a rewrite rule does not falsify previously
considered clauses. The equality factoring rule helps ensure that invariant:

u ≈ t ∨ u′ ≈ s ∨ C EqFact
(u ≈ t ∨ t 6≈ s ∨ C)θ

where θ is an mgu of u and u′.
Transposing the proof of completeness to non-ground clauses poses a

challenge, as some instances of the paramodulation rule cannot be lifted.
For example consider the clauses s ≈ t and P (x) ∨Q(x). Among ground
instances of these two clauses, inferences can be performed, resulting
for example in the conclusion P (t) ∨Q(s). However, since paramodula-
tion cannot occur at variable positions, no first-order inference can be
performed between the two clauses.

Because the grounding of an inference does not include all the in-
ferences that are possible between the groundings of its premises, the
saturation of a set of first-order clauses does not directly imply that the
set of its ground instances is also saturated. To prove completeness, we
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must observe that the conclusion of a ground instance of a paramodula-
tion inference that cannot be lifted is implied by the (smaller) conclusion
of other instances, and thus not needed to construct the model.

The omission of paramodulation at variable positions is critical for
the efficiency of the calculus, as the rule would otherwise be very pro-
lific. In fact, if the signature of the problem contains at least one func-
tion symbol, we also need to consider paramodulation under variable
positions to ensure that the rule can be lifted: for example, the clause
P (f(f(t)))∨Q(f(f(s))) would also be the conclusion of a ground instance
of paramodulation. Lifting is often a significant challenge in the design
of a calculus for first-order logic. The original presentation of paramodu-
lation [138] relied on paramodulation at variable position, together with
additional axioms (one per function symbol) to obtain completeness, be-
fore the rule could be proven complete without those [27].

1.2.3 Restricted Calculi

An important consideration in techniques for automated theorem proving
is the reduction of the size of the search space, in order for proofs to
be found within reasonable time limits. One way to achieve this is to
limit the number of inferences that can be performed between clauses of
a given set. Such restrictions will limit the expressivity of the calculus, in
the sense that short proofs that could be expressed in the non-restricted
calculus will potentially be lost. On the other hand, the reduced number
of possible inferences limits the number of “guesses” that must be made
in order to derive the empty clause. In the context of automated theorem
proving, the second point vastly outweighs the first.

Ordered resolution is a refutationally complete restriction of resolution.
It makes use of the following observation: to prove the completeness of
resolution, we used a total order on literals, and a positive literal was used
in the construction of the Herbrand model only if it occurred maximally in
a clause. Therefore, resolution inferences need to be performed only when
the positive literal resolved upon is maximal in its clause. Other inferences
may be dropped from the calculus without compromising its refutational
completeness. In order to implement this restriction, the calculus is
parameterized by an order on literals and a selection function that must
return a non-empty set of literals in any non-empty clause [85]. If the
selection function is well-behaved, that is, it always returns a negative
literal or all the maximal literals in a clause, then it is possible to restrict
inferences to selected literals without losing completeness. The notation
L ∨ C indicates that the literal L is selected in the clause.
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L ∨ C ¬L′ ∨ D
Res

(C ∨ D)σ
s 6≈ s′ ∨ C

EqRes
Cθ

where σ is an mgu of L and L′, θ is an mgu of s and s′, and L is not an equality
literal

t ≈ s ∨ C L[t′] ∨ D
SupP

(L[s] ∨ C ∨ D)θ

t ≈ s ∨ C v[t′] ≈ u ∨ D
Sup+

(v[s] ≈ u ∨ C ∨ D)θ
t ≈ s ∨ C v[t′] 6≈ u ∨ D

Sup−
(v[s] 6≈ u ∨ C ∨ D)θ

where t′ is not a variable, L is not an equality literal, θ is an mgu of t and t′,
sθ � tθ and uθ � v[t′]θ

L ∨ L′ ∨ C
Fact

(L ∨ C)σ
u ≈ t ∨ u′ ≈ s ∨ C

EqFact
(u ≈ t ∨ t 6≈ s ∨ C)θ

where σ is an mgu of L and L′, θ is an mgu of u and u′, sθ � tθ and tθ � uθ

Figure 1.1. The superposition calculus SP .

The same restriction can be applied to paramodulation, but we can
also go further and break the symmetry of equality, in a manner similar
to procedures used to solve equational problems [76]. In the proof of
completeness of paramodulation, we assumed a simplification order that
is total on ground terms, so that ground equalities could be oriented and
treated as rewrite rules. This leads to the observation that paramodula-
tion needs to be performed (on ground clauses) only if s ≺ t and u ≺ v[s].
The generalization of the simplification order to the first-order is neces-
sarily an under-approximation, and cannot be total. So for non-ground
clauses, the restrictions are relaxed to sθ 6� tθ and uθ 6� v[s′]θ. This
restriction of paramodulation gives us superposition [5, 6].

With this last refinement, we can now give a full picture of the su-
perposition calculus, in Figure 1.1. In some presentations, equality is
the only predicate, and the rules Res, Fact and SupP are omitted. This
logic is as expressive: non-equality predicates can be encoded as functions.
Together with a constant ⊥, (dis)equality literals can encode the truth of
those predicates.

1.2.4 Redundancy

Having restricted the search space at the level of literals and terms, we
finally turn our attention to clauses themselves. If we can remove clauses
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from a set N without affecting its (in)consistency, then doing so will not
affect the refutational completeness of the saturation process (although
some care must be taken not to affect fairness). For this reason, the
calculi used in theorem provers are paired with a notion of redundancy
that describes which clauses may be removed from a set. A general
criteria for redundancy is the following: a clause D is redundant in a set
N if there exist {C1, . . . , Cn} ⊆ N where C1, . . . , Cn |= D and Ci ≺ D for
1 6 i 6 n. Intuitively, redundant clauses are those that will not be used
in the construction of the model.

This criteria is based on the notion of entailment, which is not de-
cidable, so in practice provers have to settle for an (easily computable)
under-approximation of that criteria. For example, tautologies are always
redundant. Another example is subsumption: a clause C subsumes a
clause D if there exists C′ and θ such that D = Cθ ∨ C′.

1.2.5 Theory Reasoning

In many applications of first-order theorem proving, we need to consider
specific mathematical structures. For example in the context of program
verification, integers, arrays, bit vectors or recursive data structures are
common and we need ways to reason efficiently about them.

The most direct way to perform theory reasoning in a saturation
theorem prover is to add theory axioms to the set of clauses to saturate.
In some cases, proof search may be dominated by inferences between
theory axioms and their consequences, neglecting the conjecture. The set
of support strategy [139] can be used to restrict inferences among axioms
and ensure a goal-directed search [111]. This approach is conceptually
simple, does not require any modification to the solver itself, and can be
used with any theory. Even if the theory is not axiomatizable in first-order
logic, a partial axiomatization may be included. This is an easy, if very
incomplete, solution to reason about some problems in non-axiomatizable
theories.

For theories that are axiomatizable in first-order logic only with an
infinite set of axioms, refutationally complete reasoning is more difficult
to reach. It is theoretically possible to modify the saturation algorithm
to interleave the enumeration of axioms and the inference of new clauses,
in a manner that preserves the fairness of the saturation. However, this
would require extensive modification to the prover. An easier solution,
when applicable, is to provide a conservative extension of the theory T .
By using symbols outside of the language of T , it is sometimes possible to
provide a finite axiomatization A of a theory T + such that all theorems
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of T + in the language of T are also theorems of T . It is then possible to
use that finite axiomatization in the saturation process: for any sentence
F in the language of T , the unsatisfiability of A∧¬F implies that F ∈ T .

Even in cases where a theory has a finite axiomatization, saturation
of the axioms can be very inefficient. We have already given the example
of the theory of equality, which suggests that the use of dedicated infer-
ence rules to replace axioms and perform theory reasoning can lead to
improved performance. Generally, the soundness of these rules (w.r.t. to
the intended interpretations) is easy to prove, but completeness is a dif-
ferent matter. Proving completeness requires the construction of a model
for saturated sets of clauses. In the case of theory reasoning, additional
properties must be checked to ensure that the structure that is built is
not only an interpretation of the clauses, but also of the theory.

More recently, there has been work on combining SMT solvers and first-
order theorem provers to reason about quantified theory problems. The
AVATAR architecture can be used to combine the first-order reasoning
power of superposition with SMT solvers to reason on ground clauses [110].
SMT solvers can also be used to reason about non-ground clauses, by
helping instantiate them [112].

1.2.6 Implementation of a Theorem Prover

Beyond the theoretical foundations presented so far, the success of auto-
mated theorem proving requires the implementation of efficient provers.
Heuristics play an important role in this task. The superposition calculus
presented here can be parameterized in many different ways (simplifica-
tion order on terms, selection functions), and is often extended by ad-hoc
rules.

The design of a saturation algorithm is also crucial. Typically, satura-
tion algorithms follow the given clause method. Clauses are partitioned
in two sets: passive (initially containing all the clauses) and active clauses
(initially empty), with the invariant that the set of active clauses remains
saturated. A passive clause is selected to become the given clause, all
possible inferences between it and active clauses are performed and their
conclusions added to the passive clauses. Lastly the given clause becomes
active, and the process can be repeated until refutation is found or the
set of passive clauses becomes empty. The saturation algorithm must
also perform redundancy elimination and clause simplification: this can
be done forward – using the active clauses to simplify the given clause
– or backward, in which case the given clause is used to simplify active
clauses, that then need to be put back among passive clauses. The im-
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plementation of those features is often the defining trait of a saturation
algorithm. In some cases, it can even be useful to consider incomplete
saturation strategies, sacrificing theoretical completeness for practical
efficiency [117].

On top of those choices, the developer of a theorem prover faces
many engineering challenges. Even with the effort to eliminate redundant
clauses, it is not uncommon for provers to handle millions of clauses at a
given time. In these conditions, queries for unifiable terms or subsumed
clauses cannot be answered by testing all the candidates iteratively. In-
stead, indexing data structures are used to retrieve terms and clauses as
efficiently as possible [125]. Term order (under substitutions) also needs
to be checked efficiently.

Multiple first-order theorem provers based on the superposition calcu-
lus are available and under active development today, including E [123],
Spass [137], Vampire [84] and Zipperposition [46]. The CASC [127]
and SMT [36] competitions offer an opportunity to observe the latest
developments in the field of automated theorem proving.

1.3 Structure of the Thesis

This thesis describes contributions to the field of program analysis and
verification. It focuses on the use of first-order theorem provers to perform
those tasks, and considers the issue from the point of view of the users
of theorem provers as well as that of their developers. Accordingly, the
thesis is organized along two main axes of research:

• We describe a novel way to encode the semantics of imperative programs
containing loops. This encoding is particularly suited to conducting
program analysis and verification using a first-order theorem prover.
This work is described in Chapters 2 and 3.

• We describe ways to reason about the theories of datatypes and co-
datatypes using a saturation-based theorem prover. These theories
are particularly useful in program analysis, since many programming
languages use these types as the main representation of data. This
work is described in Chapters 4, 5 and 6.

Paper 1: Reasoning About Loops Using Vampire in
KeY

The symbol elimination method is a novel way to generate invariants
that relies on the consequence finding mechanism provided by first-order
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theorem provers. It was originally introduced in [82]. In the paper repro-
duced in this thesis, we present new extensions of the symbol elimination
technique:

• a new input format: a guarded command language meant to be used
as an intermediate verification language to describe loops in a variety
of programming languages;

• the ability to specify pre- and post-conditions of the loops to be verified:
these can be used to produce stronger invariants, to filter the most
relevant invariants among those generated, or even to perform the
proof of correctness of the loop directly within the tool, rather than
using an external tool;

• the integration of our invariant generation tool in the KeY verification
framework for the Java programming language, which demonstrates
how the guarded command language can be used to describe programs
in mainstream languages;

• Refinements in the static analysis phase of the symbol elimination
process that the quality of invariants generated.

Statement of contribution. This paper is co-authored with Laura
Kovács and Wolfgang Ahrendt. Simon Robillard is the main author.

It was originally published in the peer-reviewed 20th International
Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 20) and presented in Suva, Fiji. It is reproduced here in an
extended version, which includes material published in Proceedings of the
1st and 2nd Vampire workshops.

Paper 2: Loop Analysis by Quantification over Itera-
tions

This paper formalizes the encoding of the semantics of loop programs
that was originally introduced for symbol elimination in [82] and further
extended in the previous paper. It also describes new applications of this
encoding. Contributions include:

• the formalization of the semantics of the language of extended expres-
sions used for symbol elimination;

• an axiomatization of the theory of extended expressions that hold for a
given loop, and a proof of its completeness (up to completeness of the
background theory);
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• the use of extended expressions to express and verify functional and
temporal properties about programs, in particular partial correctness
and termination;

• a proof of the soundness of the symbol elimination method for invariant
generation;

• experiments with different background theories, in particular arrays
and natural numbers, and the comparison of various provers on these
encodings.

Statement of contribution. This paper is co-authored with Bernhard
Gleiss and Laura Kovács. Simon Robillard is the main author.

It was originally published in the peer-reviewed 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 22) and presented in Awassa, Ethiopia.

Paper 3: Coming to Terms with Quantified Reasoning

Many programming languages manipulate data defined with the use of
algebraic data types. Term algebras provide a concrete semantics for such
data types. The ability to reason efficiently about these algebras is there-
fore crucial to analyze functional programs and verify their correctness.
In the paper reproduced in this thesis, we present ways to reason about
term algebras in a first-order theorem prover. The contributions of this
paper include:

• a conservative extension of the theory of term algebras based on a finite
number of axioms (whereas the theory itself is not finitely axiomatiz-
able);

• inference rules dealing specifically with term algebra symbols, improv-
ing the efficiency of reasoning about problems with term algebras;

• the implementation of the above in the first-order theorem prover Vam-
pire.

Statement of contribution. This paper is co-authored with Andrei
Voronkov and Laura Kovács. Simon Robillard is the main author.

It was originally published in the peer-reviewed Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017) and was presented in Paris, France.

18



Paper 4: An Inference Rule for the Acyclicity Prop-
erty of Term Algebras

Acyclicity is the property of term algebras that prevents their finite ax-
iomatization. Instead of relying on a conservative extension of the theory
to encode the property, this paper proposes an inference rule aimed at
capturing it. The paper contributes:

• the description of a rule to capture the acyclicity property of term
algebras, and a proof of it soundness;

• details of an efficient implementation of the rule, based on term indexing
techniques;

• experimental evidence that the rule outperforms the conservative ex-
tension on hard term algebra problems.

Statement of contribution. Simon Robillard is the sole author of this
paper.

It was originally published in the Proceedings of the 4th Vampire
Workshop and presented in Gothenburg, Sweden.

Paper 5: Superposition of Datatypes and Codatatypes

This paper applies the ideas of a conservative extension of a theory and
an extended superposition calculus to co-algebraic data types. The main
difference between this theory and that of algebraic data types (term
algebras) is that the acyclicity property is replaced by the existence of
unique fixpoints: cyclic terms exists, and observably similar cyclic terms
are equal. The paper also refines the idea of using a calculus to replace
some axioms of algebraic data types. The contributions of this paper are
the following:

• a conservative extension of the theory of co-algebraic data types based
on a finite number of axioms;

• a modification of the acyclicity rule described in the previous paper
that makes it complete, in the presence of some axioms;

• a similar approach for the uniqueness of co-algebraic data type fixpoints;

• rules replacing the axioms of distinctness and injectivity common to
both algebraic and co-algebraic data types, while preserving complete-
ness;
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• proofs of completeness and soundness of the resulting (modular) calcu-
lus;

• the implementation of the above in the first-order theorem prover Vam-
pire.

Statement of contribution. This paper was co-authored with Jasmin
Blanchette and Nicolas Peltier. Simon Robillard was the instigator of the
paper. The proof of completeness of the calculus is due to Nicolas Peltier.

It was originally published in the peer-reviewed 9th International
Joint Conference On Automated Reasoning and presented in Oxford,
United Kingdom. It is reproduced here in an extended version previously
published as a technical report.

1.4 Perspectives

A recent trend in the world of automated theorem proving is the conver-
gence of two opposite approaches: model construction (SMT solving) and
refutation (saturation-based proving). Historically, the former has been
the preferred way to deal with problems featuring theory reasoning, while
the latter was able to handle full first-order quantification. In practical
applications, problems commonly include both theories and quantifiers.
For this reason, researchers are now trying to bridge the gap in both direc-
tions. State-of-the-art SMT solvers are equipped with means to deal with
quantification [49,60, 61], while saturation-based provers are extended to
reason about various theories, an effort to which this thesis contributes.
The combination of the two approaches in a single prover [110,112] is also
a promising venue of research. Another ongoing development is the exten-
sion of these proving techniques to higher-order logic, for SMT solvers [7]
as well as saturation-based provers [16,20].

Program verification is one of the domains that have benefited the
most from the advances in automated theorem proving. In order to go fur-
ther, we likely need to improve the interface between program verification
tools and general-purpose reasoning engines. Intermediate verification
languages [56, 90] can already be used for this purpose, including with
saturation-based provers [30], but the lack of robustness remains an is-
sue [31]. Furthermore, in the context of program verification, theorem
provers are typically used as trusted black boxes. In order to maximize
reliability, it would be preferable to perform some proof reconstruction,
an approach already adopted when interfacing automated and interactive
theorem provers [24].
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Automated theorem proving has been a subject of interest since the
early days of computer science. It is a fundamentally challenging task,
but thanks to innovative techniques and increased hardware capabilities,
automated tools can now tackle some non-trivial problems in various
domains of application. In turn, these applications provide the research
community with motivating examples, raise new problematics, and drive
the development of improved tools. This synergy will hopefully continue
and help push the boundaries of the field.
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Chapter 2

Reasoning About Loops
Using Vampire in KeY

Wolfgang Ahrendt, Laura Kovács and Simon Robillard

Abstract. We describe symbol elimination and consequence finding
in the first-order theorem prover Vampire for automatic generation of
quantified invariants, possibly with quantifier alternations, of loops with
arrays. Unlike the previous implementation of symbol elimination in
Vampire, our work is not limited to a specific programming language but
provides a generic framework by relying on a simple guarded command
representation of the input loop. We also improve the loop analysis part
in Vampire by generating loop properties more easily handled by the
saturation engine of Vampire. Our experiments show that, with our
changes, the number of generated invariants is decreased, in some cases,
by a factor of 20. We also provide a framework to use our approach
to invariant generation in conjunction with pre- and post-conditions of
program loops. We use the program specification to find relevant invari-
ants as well as to verify the partial correctness of the loop. As a case
study, we demonstrate how symbol elimination in Vampire can be used
as an interface for realistic imperative languages, by integrating our tool
in the KeY verification system, thus allowing reasoning about loops in
Java programs in a fully automated way, without any user guidance.

Originally published in 20th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning, volume 9450 of LNCS,
pages 434–443. Springer, 2015.
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2.1 Introduction

Reasoning about the (partial) correctness of programs with loops requires
loop invariants. Typically, loop invariants are provided by the user as
annotations to the program, see e.g. [14, 47, 91]. Providing such annota-
tions requires a considerable amount of work by highly qualified personnel
and often makes program analysis prohibitively expensive. Therefore, au-
tomation of invariant generation is invaluable in making program analysis
scale to large, realistic examples.

In [82], the symbol elimination method for generating invariants was
introduced. The approach uses first-order theorem proving, in particular
the Vampire prover [84]. Symbol elimination allows the generation of
quantified invariants, possibly with quantifier alternations, for programs
with unbounded data structures, such as arrays. While experiments of
invariant generation in Vampire show that symbol elimination generates
non-trivial invariants, the initial implementation [54] of program analysis
and invariant generation in Vampire has various disadvantages: it can
only be used with programs written in C, the number of generated in-
variants is too large, and generating relevant invariants did not take into
account the program specification. Moreover, the process of invariant
generation was not integrated, nor evaluated in a verification framework,
making it hard to assess the quality and practical impact of invariant gen-
eration by symbol elimination. In this paper we address these limitations,
as follows.

We provide a new and fully automated tool for invariant generation,
by using symbol elimination in Vampire. To this end, we re-implemented
program analysis and invariant generation in Vampire. Our implemen-
tation is fully compatible with the most recent development changes in
Vampire. It is designed to be independent of any particular program-
ming language: inputs to our tool are program loops written in a simple
guarded command language. Details on the guarded language representa-
tion used by our work are given in Section 2.2, whereas symbol elimination
in Vampire is described in Section 2.3.

Our work is compatible with recent developments in Vampire. In
order to take advantage of these changes, the program analysis phase
of symbol elimination – during which some lightweight static analysis
techniques are used as a first step to symbol elimination – has been mod-
ified and improved. We propose new ways for extending quantified loop
properties describing valid loop properties, by simplifying the properties
over array updates and next state relations. These improvements result
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in properties that are more easily handled by the inference engine of
Vampire; they are detailed in Section 2.4. We also extended symbol elim-
ination by taking into consideration also the loop specification (contract),
which may optionally be given by the user in the form of pre- and post-
conditions. If available, pre-conditions are used to derive more precise in-
variants, and post-conditions can be used to select the subset of invariants
relevant to the verification task. We also turn symbol elimination into
an automatic (incomplete) way to directly prove the correctness of the
loop w.r.t. to a contract. Our work provides an alternative to Hoare-style
verification of loops and avoids the need for explicitly stated invariants.
Generating relevant invariants and proving partial correctness of loops
using symbol elimination are presented in Section 2.5.

Reasoning about real programming languages poses several challenges,
e.g. using machine integers instead of mathematical ones or reasoning
about out-of-bound array accesses. In order to showcase the relevance
of our implementation in real applications, we integrated our approach
to loop reasoning in Vampire into the KeY verification system [14], thus
allowing automatic reasoning about loops in Java programs, as demon-
strated in Section 2.6. We experimentally evaluate invariant generation
in Vampire on realistic examples, the results are given in Section 2.7.

The main advantage of our tool comes with its full automation for
generating invariants, possibly with quantifier alternations. Unlike [59,63],
where user-given invariant templates are used, we require no user guidance
and infer first-order invariants with arbitrary quantifiers. Contrary to [45],
we do not use specialized abstract domains, but use saturation theorem
proving to generate quantified invariants. Theorem proving, in the form of
SMT solving, is also used in [89] to automatically compute loop invariants,
however only with universal quantifiers.

In order to achieve the above improvements and extensions to symbol
elimination, we completely re-implemented symbol elimination in Vam-
pire. Our work provides a new and fully automated tool for invariant
generation and proving partial correctness of loops. Our implementation
required 3000 lines of C++ code, is fully compatible with the recent ver-
sion of Vampire (version 3.0), and is available at www.cse.chalmers.
se/~simrob. The integration of Vampire with KeY required about 1000
lines of Java code.
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2.2 Input Language

2.2.1 Syntax

Inputs to our approach are loops with nested conditionals, written in a
simple guarded command language. Loops may contain scalar variables
and arrays ranging over (unbounded) integers. In what follows, we use
upper case letters A,B,C, . . . to denote array variables and lower case
letters a, b, c, . . . for scalars. We use standard arithmetical function sym-
bols +,−, ·,÷ and predicate symbols ≤,≥. We write A[p] to mean (an
access to) the array element at position p in the array A.

We describe loops by a loop condition and an ordered collection of
guarded statements; the loop condition is a quantifier-free Boolean formula
over program variables. A guarded statement is a pair of a guard (also
a Boolean formula) and a collection of assignments. In our setting, a
guarded statement cannot contain two assignments to the same scalar
variable v. If two array assignments A[i] := e and A[j] := e′ occur in a
guarded statement, the condition i 6= j is added to the guard. These two
restrictions ensure that each location is modified at most once by a given
guarded statement.

In addition to the loop itself, pre- and post-conditions can also be
specified, using the keywords requires and ensures, respectively. Pre-
and post-conditions are Boolean formulas over program variables, possibly
with quantifiers.

Figure 2.1 gives an example of a loop using the syntax supported by
our work.

2.2.2 Semantics

We define the semantics of the guarded command language by the notion
of program states mapping scalar variables to values of the correct type
and arrays to functions. Note that arrays bounds are not dealt with in
the semantics: in a given state, an array storing values of type τ is treated
as a total function of type Z → τ . Array bounds checking may easily
be encoded with the help of guards if required. Evaluation of program
expressions in a given state is done in the standard way.

In our setting, there is exactly one program state for each loop iteration.
The symbol n is used to denote the upper bound on the number of loop
iterations, so that for any loop iteration i we have 0 ≤ i < n. We write σ0

and σn to respectively speak about the initial and final state of the loop.
If the loop condition is valid in a given program state σi, the first guarded
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requires (k == 0);
ensures forall int p, (0 <= p & p < n) ==>

(A[p] >= B[p]
& A[p] >= C[p]
& (A[p] == B[p] | A[p] == C[p]));

while (k < n) do
:: B[k] >= C[k] -> A[k] = B[k]; k = k + 1;
:: true -> A[k] = C[k]; k = k + 1;

od

Figure 2.1. Example of an input to our work. This example loop is com-
posed of two guarded statements; it computes the maximum of elements
in arrays B and C at every position and writes it in the corresponding
position in the array A. The program specification is given by the pre-
(requires) and post-conditions (ensures).

statement whose guard is valid is executed: its assignments are applied
simultaneously to σi, yielding the state σi+1. For example, executing the
guarded statement

true -> x = 0; y = x;

in a state where x = 1 holds, yields a state in which y = 1 and not y = 0.
If the loop condition is not valid, or if none of the guards hold, the

loop is terminated: σi becomes the final state of the loop σn.
Note that while these semantics are deterministic, our method for

invariant generation could be adapted to work with non-deterministic
semantics with only minor changes.

2.3 Invariant Generation Using Symbol Elim-
ination

The symbol elimination method aims at producing invariants for a given
loop, i.e., first-order formulas in a language of assertions Lasrt that hold
at arbitrary iterations of the loop. The central idea of symbol elimination
is to use formulas expressed in a language of extended expressions Lextd

during intermediate steps of the procedure. This language can express
richer properties of the loop than is possible with Lasrt : while any formula
using symbols in Lasrt has a semantic equivalent in Lextd , the converse is
not true. During the procedure, we first deploy static analysis techniques
to extract properties of the loop expressed in Lextd . In a second phase,
we use saturation theorem proving to discover consequences of those
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properties that can be expressed using only symbols from Lasrt . Such
properties are loop invariants.

In this section, we define Lasrt and Lextd , then describe the symbol
elimination procedure to generate loop invariants. The definitions assume
a given loop, in particular they depend on the set of program variables
used within that loop.

2.3.1 Assertions

We define Lasrt , the language of assertions, as follows. For each scalar
variable v of type τ in the loop, Lasrt includes two symbols v : τ and
vinit : τ . For each array A storing values of type τ , Lasrt includes
a function symbol of type Z → τ . Interpretation of a formula using
symbols in Lasrt depends on a given program state σ. The symbol v is
interpreted as the value of the program variable v in that state, while
vinit is interpreted as the value of that variable at the start of the loop.

An invariant is a formula that uses symbols from Lasrt and is valid for
any state σi. The pre- and post-conditions of the loops are formulas in
Lasrt that are required to hold at the initial state σ0 and the final state
σn, respectively.

2.3.2 Extended Expressions

Unlike Lasrt , symbols in Lextd do not depend on a particular program state
for interpretation. Formulas using such symbols can express properties of
the loop at arbitrary states, such as the relation between two successive
program states.

For every variable v of type τ , Lextd includes a function of type Z→ τ1.
For convenience, applications of these functions are noted v(i); they are
interpreted as the value of v in the state σi. For each array A, Lextd

includes a function of type Z × Z → τ . Similarly, we use the notation
A(i)[p] to represent the value stored at position p after the ith iteration.
We call v(i) and A(i)[p] extended expressions. Note that for any program
expression E, we can build a term (or predicate, in the case of Boolean
program expressions) by systematically replacing each variable by its
extended expression. We may simply abbreviate such construction E(i).
Lextd also includes the symbol n which denotes the upper bound on

the number of loop iterations. Formulas in Lextd that are valid for a given
loop are called extended loop properties.

1The type N → τ would perhaps be more accurate, but in practice it is more
efficient to add predicates enforcing the non-negativity where needed.
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The following semantic equivalences relate Lasrt and Lextd

v(0) ≡ vinit
v(n) ≡ v

A(0)[p] ≡ Ainit[p]

A(n)[p] ≡ A[p]

2.3.3 Loop Analysis and Symbol Elimination

In the first step of our invariant generation procedure, we perform simple
static analysis to generate extended loop properties. For example, ana-
lyzing the program in Figure 2.1 would lead to generating the following
property:

∀i
(

0 6 i < n =⇒ k(i+1) ≈ k(i) + 1
)

This property, which describes the assignment to the variable k at each
iteration, is added to the list of extended properties as an assumption. A
comprehensive description of the analysis performed by our tool and the
resulting properties is given in Section 2.4. Note that this phase is quite
flexible, and additional properties (user knowledge, invariants generated
by other tools. . . ) could potentially be added to the list of extended
properties.

While the properties extracted during that phase are valid at arbitrary
loop iterations, they are not yet invariants as they use symbols of extended
expressions, symbols that are not in Lasrt . The next step in our invariant
generation process is to eliminate symbols that are not in Lasrt . This is
done by generating formulas that only use symbols from Lasrt and are
logical consequences of the properties in Lextd . To this end we use the
prover to perform symbol elimination and generate invariants in Lasrt .
For more details on symbol elimination we refer to [83].

2.4 Extracting Loop Properties

In this section, we list the properties extracted from the loop during the
first phase of invariant generation. It is important to note that there is no
definitive way to chose which properties must be extracted from the loop,
as long as those properties are indeed consequences of the loop semantics.
The strength and the formulation of the properties play a great role in
the quality of the invariants produced.
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2.4.1 Properties of Scalar Variables

Program variables that are never updated by the loop body are treated
as constant symbols during the analysis. For variables that are updated,
simple static analysis techniques are used to characterize the behavior of
those updates.

Let us call a scalar variable v increasing (respectively decreasing) if,
for all possible computations of the loop, in any iteration i such that
0 6 i < n, it has the property v(i+1) > v(i) (respectively v(i+1) 6 v(i)). A
variable is said to be strict if, for all possible computations of the loop,
in any iteration i such that 0 6 i < n, v(i+1) 6= v(i), i.e., the value of the
variable is modified at every iteration. Finally a variable is called dense
if, for all possible computations of the loop, in any iteration i such that
0 6 i < n, =⇒ |v(i+1) − v(i)| 6 1, i.e., its value is increased or decreased
by at most one during any iteration.

Having detected those properties of the variables, the following prop-
erties are added to the list of extended properties:

1. If v is increasing, strict and dense, we add the property:

∀i
(
v(i) ≈ v(0) + i

)
2. If v is increasing and strict, but not dense, we add the property:

∀ij
(
j > i =⇒ v(j) > v(i)

)
3. If v is increasing but not strict, we add the property:

∀ij
(
j > i =⇒ v(j) > v(i)

)
4. If v is increasing and dense, but not strict, we add the property:

∀ij
(
j > i =⇒ v(i) + j > v(j) + i

)
Similar properties, with the required modifications, are generated for
decreasing variables.

2.4.2 Update Properties of Arrays

In order to describe the behavior of arrays, for each array we analyze the
guarded statements to collect:
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1. the conditions under which the array is updated at position p by the
value v during iteration i. Let us consider the example in Figure 2.1,
for the array A (the only one to be updated), these conditions are(

0 6 i < n ∧B(i)[k(i)] > C(i)[k(i)] ∧ v ≈ B(i)[k(i)] ∧ p ≈ k(i)
)

∨
(
0 6 i < n ∧ ¬B(i)[k(i)] > C(i)[k(i)] ∧ v ≈ C(i)[k(i)] ∧ p ≈ k(i)

)
which we denote updA(i, p, v)

2. the conditions under which the array is updated at position p during
iteration i, by any value. For the same example, they are(

0 6 i < n ∧B(i)[k(i)] > C(i)[k(i)] ∧ p ≈ k(i)
)

∨
(
0 6 i < n ∧ ¬B(i)[k(i)] > C(i)[k(i)] ∧ p ≈ k(i)

)
these are noted updA(i, p)

After this analysis we can express the following properties of the array:

1. if the array is never updated at a position p, the value at this
position remains constant

∀ip
(
¬updA(i, p) =⇒ B(n)[p] ≈ B(0)[p]

)
2. if the array is updated only once at a position p, the value associated

with this update is the final value

∀ijpv
(
updA(i, p, v) ∧ (updA(j, p) =⇒ j ≈ i) =⇒ B(n)[p] ≈ v

)
Note that compared to [82], the second property has been modified

as it used to read

∀ijpv
(
updA(i, p, v) ∧ (updA(j, p) =⇒ j 6 i) =⇒ B(n)[p] ≈ v

)
While less general, the new property is more easily handled by the prover,
since equality is a built-in predicate of the superposition calculus used by
Vampire.

In previous implementations, predicate symbols corresponding to updA
were used in both properties, and assumptions giving the predicate defi-
nitions were also added. Those predicate symbols were then eliminated.
The new tool replaces every occurrence of the predicate symbol directly
by its definition, thus increasing efficiency and the quality of invariants
produced.
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2.4.3 Assignments

The relation between two consecutive states, and in particular the effects
of assignments on states, can be described by extended expressions.

For the program in Figure 2.1, the following two properties (one
for each guarded statement) are extracted and added to the extended
properties.

∀i (0 6 i < n ∧B(i)[k(i)] > C(i)[k(i)] =⇒ A(i+1)[k(i)] ≈ B(i)[k(i)]

∧ k(i+1) ≈ k(i) + 1)

∀i (0 6 i < n ∧ ¬B(i)[k(i)] > C(i)[k(i)] =⇒ A(i+1)[k(i)] ≈ C(i)[k(i)]

∧ k(i+1) ≈ k(i) + 1)

2.4.4 Additional Properties

Finally the property indicating that the loop condition and one guard
must hold at any given iteration is added to the assumptions.

∀i

0 6 i < n =⇒
∨
j

G
(i)
j ∧ C

(i)


In the original description of the symbol elimination method, arith-

metic function and predicate symbols were introduced as needed and
given an axiomatization. This is no longer necessary, as we use the de-
fault symbols now provided by Vampire. At the moment, any arithmetic
reasoning in Vampire is still based on axiomatic theories, but symbol
elimination would directly benefit from any further development concern-
ing arithmetic reasoning in Vampire.

As noted before, the list of extended properties is not definitive. This
makes our method flexible, as ad-hoc properties can potentially be added
to the assumptions, whether it be user knowledge or properties gathered
by other invariant generation techniques (e.g. [59, 63])

2.5 Loop Contract and Correctness

Previous works on symbol elimination [54,68] report every property dis-
covered during symbol elimination. This often results in hundreds of
clauses being reported to the user in a few seconds, many of which are
consequences of each other. To address this issue, a post-processing step
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was added during which some redundant clauses were eliminated. How-
ever minimizing a set of first-order clauses is an undecidable problem.
Even if a minimal set of clauses is obtained, previous works on symbol
elimination do not take into account a verification contract (specification)
for analyzing and verifying loops. Therefore there is no realistic way to
assess the quality of generated invariants in the process of verification.
We also note that symbol elimination generates invariants that hold at
any iteration of the loop, but may not be inductive. Using non-inductive
invariants makes software verification harder.

By enabling the user to specify a post-condition of the loop, and
using it to select relevant invariants within the set produced by symbol
elimination, we address those issues. Unlike previous works, our work
enables the user to specify optional pre- and post-conditions for the loop
under analysis, using the keywords requires and ensures, respectively.
They are expressions in Lasrt (quantified Boolean formulas over program
variables).

2.5.1 Pre-conditions

Recall that any expression in Lasrt can be translated to an expression
Lextd . Pre-conditions given by the user as expressions in Lasrt are simply
translated to Lextd and added to the extended properties. For example
this precondition

requires forall int p, 0 <= p & p < l ==> A[p] != 0

results in the following property being added to the extended proper-
ties:

∀p
(

0 6 p < l =⇒ A(0)[p] 6= 0
)

Such additional information enables symbol elimination to derive
stronger invariants.

2.5.2 Invariant Filtering

Given a loop condition C, a post-condition P and a set of invariants
I1, . . . , Ik produced by symbol elimination, we attempt to prove P under
the assumptions I1 ∧ · · · ∧ Ik ∧ ¬C. If the refutation proof succeeds, we
can select the subset of invariants that were effectively used: they are
among the leaves of the proof tree.

This filtering process is carried out in parallel of symbol elimination.
One instance Sgen of the saturation algorithm is ran to generate invariants,
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possibly with a time limit. Another instance Sfilter is started on a different
thread, it initially tries to prove P assuming only ¬C. Each time a new
invariant is discovered by Sgen , it is added to the list of assumptions in
Sfilter , and the proof attempt is restarted. This way, the process can stop
as soon as the set of discovered invariants is strong enough to imply the
post-condition. If the time limit of Sgen is reached however, the whole
process is aborted.

This filtering mechanism also provides a good heuristic to select an
inductive invariant. While this is not always true, our experiments (Sec-
tion 2.7) show that the set of selected invariants is usually inductive.

2.5.3 Direct Proof of Correctness

During invariant filtering, we use invariants, which are consequences of
the extended properties, to prove the post-condition. In any case where
this succeeds, the post-condition is also a consequence of the extended
properties.

As an alternative to invariant filtering, our tool offers the option of
omitting the symbol elimination stage and proving the post-condition
from the extended properties themselves. In this setting, no invariants
are used or reported. This provides an alternative to classic Hoare-style
verification of loops which, while incomplete, is fully automatic.

Finding a direct proof of correctness of the loop is faster than per-
forming invariant filtering (see Section 2.7) and should succeed for every
program where invariant filtering succeeds. In some cases, due to the fact
that extended properties are stronger than the invariants they imply, a
direct proof may even succeed where invariant filtering does not.

2.6 Integration with the KeY System

While previous implementations of symbol elimination [54,68] used a syn-
tax similar to the C programming language, only a subset of C programs
could be analyzed. Many aspects of the semantics of C were not taken
into account.

By using a guarded command language, our implementation clarifies
the semantics of the input language. It is consequently easier to use the
guarded command language as an representation of the semantics of a
program given in another language. In our experiments, we demonstrated
this possibility by using the KeY verification system [14] to translate Java
programs with loops into our guarded command language.
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In this section we describe the integration of our invariant genera-
tion method to the KeY verification system. We discuss the modularity
afforded by our tool and its applicability to realistic examples.

2.6.1 Dynamic Logic

KeY [14] is a deductive verifier for functional correctness properties of
Java source code. It uses dynamic logic (DL), a modal logic for reasoning
about programs. DL extends first-order logic with the modality [p]ϕ,
where p is a program and ϕ is another DL formula; [p]ϕ is true in a state
from which running the program p, in case of termination, results in a
state where ϕ is true.

2.6.2 Symbolic Execution

KeY uses symbolic execution. For that, DL is extended by “explicit sub-
stitutions”, called updates. During the symbolic execution of a program
p, the effects of p are gradually, from the front, turned into updates, and
applied to each other. After some proof steps, an intermediate proof node
may look like Γ ` U [p′]ϕ, where a certain prefix of p has turned into
update U , representing the effects so far, while a “remaining” program p′

is yet to be executed. Note that most proofs branch over case distinc-
tions, usually triggered by Boolean expressions in the source code. The
semantics of the Γ ` U . . . part of a sequent is in many ways close to
those of a guarded assignment in Vampire’s programming model. Γ can
be understood in the same way as Vampire’s guards, while updates and
Vampire’s assignments share the same semantics of simultaneous appli-
cation. We therefore use symbolic execution to perform the translation
of Java programs to Vampire’s guarded command language, as follows.
Given a program p containing a loop, we apply symbolic execution to all
instructions preceding the loop, leading to a sequent:

Γ ` U [while (se) { b }; p′]ϕ

where se is a side effect-free Java expression2. As a step towards employ-
ing Vampire, we launch a separate KeY proof at this point, starting from
the sequent: Γ, se′ ` UV[b]ψ. Here, se′ is the result of applying U to se, V
is an anonymizing update [15] meant to remove information on variables
modified by the loop body b, and ψ is an uninterpreted predicate. This
side proof is not meant to prove anything, but only to carry out symbolic

2More complex Boolean expressions are transformed away by KeY rules.
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execution of any iteration (hence V) of the loop body b. Since ψ is unin-
terpreted, the side proof started with this sequent cannot be completed;
however, assuming that they do not themselves contain an unannotated
loop, instructions of b can be symbolically executed. We are then left
with a proof tree containing one or more open nodes, all of which have the
form: Γ′ ` {v1 := e1; . . . ; vk := ek}[ ]ψ. Each of these nodes corresponds
to a possible path of symbolic execution, which is transformed into a
guarded assignment:

Gamma’ -> v1 = e1; ... ; vk = ek;

Currently this translation is not complete: if a nested loop is present
within the loop body b, its translation requires it to be annotated with
an invariant. Other language features, such as exception throwing and
catching, abrupt termination and heap-related properties, among others,
are not supported. Many of those aspects can be easily and efficiently
encoded by introducing additional Boolean variables in the program,
however at the time of writing, Boolean variables are not supported
by our tool. This support should be added soon, thanks to the recent
introduction of a first-class Boolean sort in Vampire [78].

2.6.3 Integration

If the user is satisfied with delegating the proof of correctness of the
loop to Vampire, when the Vampire proof succeeds, it is possible to
simply complete the main KeY proof by applying a dedicated axiomatic
rule. If more transparency is desired, it is of course possible to import
the invariants produced by Vampire (with or without invariant filtering)
into KeY and use these invariants in the KeY inference rule normally used
with user-annotated invariants. KeY will however need to prove that the
invariants generated by Vampire are indeed invariants.

2.7 Experimental Results

We evaluated our tool on 20 challenging array benchmarks taken from
academic papers [53,54] and the C standard library. Our benchmarks are
listed in Table 2.1. The program absolute computes the absolute value
of every element in an array, whereas copy, copyOdd and copyPositive
copy (some) elements of an array to another. The example find searches
for the position of a certain value in an array, returning -1 if the value
is absent. The program findMax locates the maximum in an unsorted
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Table 2.1. Experimental results on loop reasoning using Vampire.

Name Cond. ∆direct ∆filter N5 Nfilter

absolute yes 0.271 2.358 19 3
copy no 0.043 2.194 9 (37) 1
copyOdd no 0.122 2.090 9 (214) 1
copyPartial no 0.042 3.145 9 1
copyPositive yes 9
find yes 123
findMax yes 3
init no 0.035 2.059 9 (35) 1
initEven no 10
initNonConstant no 0.114 2.054 9 (104) 1
initPartial no 0.042 3.129 9 1
inPlaceMax yes 39
max yes 0.696 3.535 20 2
mergeInterleave no 20
partition yes 164 (647)
partitionInit yes 98 (169)
reverse no 0.038 9 (42)
strcpy no 0.036 2.126 9 1
strlen no 0.018 2.023 2 (26) 1
swap no 26

array. The examples init, initEven, and initPartial initialize (some)
array elements with a constant, whereas initNonConstant sets the value
of array elements to a value depending on array positions. inPlaceMax
replaces every negative value in an array by 0, and max computes the
maximum of two arrays at every position. mergeInterleave interleaves
the content of two arrays, whereas partition copies negative and non-
negative values from a source array into two different destination arrays.
reverse copies an array in reverse order, and swap exchanges the content
of two arrays. Finally, strcpy and strlen are taken from the standard
C library. Each benchmark contains a loop together with its specification.
Our benchmarks are available at the URL of our tool.

We carried out two sets of experiments: (i) invariant generation, by
using a guarded command representation of the benchmarks as inputs
to our tool; (ii) loop analysis of realistic Java programs, by specifying
the examples as Java methods with JML contracts as inputs to our tool
and using our integration of invariant generation in KeY. All experiments
were performed on a computer with a 2.1 GHz quad-core processor and
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8GiB of RAM.
Table 2.1 summarizes our results. The second column indicates

whether the benchmark loops contain conditionals. Column ∆direct shows
the time required to prove the partial correctness of the benchmarks, by
proving the loop specification from the extended properties generated
by program analysis in Vampire. On the other hand, column ∆filter

gives the time needed by our tool to generate the relevant invariants
from which the loop post-condition can be proved. The time results are
given in seconds. Where no time is given, a correctness proof/filtering of
relevant invariants was not successful. Column N5 shows the number of
all invariants generated by our tool with a time limit of 5 seconds (before
filtering of relevant invariants). The figure listed in parentheses gives
the number of invariants produced by a previous implementation [54]
of invariant generation in Vampire. Finally, column Nfilter reports the
number of invariants selected as relevant invariants; the conjunction of
these invariants is the relevant invariant from which the loop specification
can be derived.

2.7.1 Invariant Generation

Note that for all examples, our tool successfully generated quantified
loop invariants. Moreover, when compared to the previous implementa-
tion [54] of invariant generation in Vampire, our tool brings a significant
performance increase: in all examples where the implementation of [54]
succeeded to generate invariants, the number of invariants generated by
our tool is much less than in [54]. For example, in the case of the program
copyOdd, the number of invariants generated by our tool has decreased
by a factor of 24 when compared to [54]. This increase in performance
is due to our improved program analysis for generating extended loop
properties. For the examples where the number of invariants generated
by [54] is missing, the approach of [54] failed to generate quantified loop
invariants over arrays. We also note that invariants generated by [54] are
logical consequences of the invariants generated by our tool.

2.7.2 Invariant Filtering

When evaluating our tool for proving correctness of the examples, we
succeeded for 11 examples out of 19, as shown in column ∆direct of
Table 2.1. For these 11 examples, the partial correctness of the loop was
proved by Vampire by using the extended loop properties generated by
our tool. Further, for 10 out of these 11 examples, our tool successfully
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selected the relevant invariants from which the loop specification could
be proved. For the example reverse the relevant invariants could not be
selected within a 5 seconds time, even though the partial correctness of the
loop was established using the extended properties of the loop. The reason
why the relevant invariants were not generated lies in the translation of
the Java method into our guarded command representation: due to the
limited representation of heap-related properties, the post-condition given
to Vampire is weaker than the original proof obligation in KeY. This
causes the invariant relevance filter to miss properties required to carry out
the proof within KeY, even though the relevant invariants were generated
by our tool.

When analyzing the 9 examples for which our tool failed to generate
relevant invariants and to prove partial correctness, we noted that these
examples involve non-trivial arithmetic and array reasoning. We believe
that improving reasoning with full first-order theories in Vampire would
allow us to select the relevant invariants from those generated by our
tool.

2.8 Conclusion

We provide a new and fully automated tool for invariant generation, by
re-implementing and improving program analysis and symbol elimination
in Vampire. One of these improvements is the dedicated parser for
the guarded command language, which can now be used in a simple
way to describe the semantics of a loop. We also introduce a number
of simplifications during the generation of extended properties of loops,
leading to an increased quality in the invariants produced. We allow the
possibility of specifying a verification contract for the loop being analyzed,
and we add a filtering stage to output only invariants that are relevant to
the partial correctness of the loop w.r.t. to that contract. We also extend
symbol elimination to directly prove partial correctness of loops, without
the need for explicitly stating invariants. We experimentally evaluated
our tool on a number of examples. We integrated our tool with the KeY
verification system, allowing automatic reasoning about realistic Java
programs using first-order proving. We experimentally evaluated our tool
on a number of examples coming from KeY.

For future work, we intend to improve theory reasoning in Vampire;
this should benefit program analysis as well as more traditional applica-
tions of the theorem prover. The analysis of programs that we perform
generates first-order problems, which we believe are challenging bench-
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marks for reasoning with quantifiers and theories. We intend to add these
examples to the CASC theorem proving competition [127]. We are also
interested in analyzing more complex programs and support the transla-
tion of the full semantics of a programming language such as Java into
our program analysis framework. For doing so, new features and exten-
sions of the TPTP language supported by first-order theorem provers
are needed, for example the use of a first class Boolean sort as described
in [78]. Finally, in order to target a greater number of programming
languages, it would be useful to provide a front-end to an intermediate
verification language, e.g. Boogie [8].
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Chapter 3

Loop Analysis by
Quantification over Iterations

Bernhard Gleiss, Laura Kovács and Simon Robillard

Abstract. We present a framework to analyze and verify programs con-
taining loops by using a first-order language of so-called extended expres-
sions. This language can express both functional and temporal properties
of loops. We prove soundness and completeness of our framework and
use our approach to automate the tasks of partial correctness verification,
termination analysis and invariant generation. For doing so, we express
the loop semantics as a set of first-order properties over extended expres-
sions and use theorem provers and/or SMT solvers to reason about these
properties. Our approach supports full first-order reasoning, including
proving program properties with alternation of quantifiers. Our work is
implemented in the tool QuIt and successfully evaluated on benchmarks
coming from software verification.

Originally published in 22nd International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning, volume 57, pages 381–
399. EasyChair, 2018.
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3.1 Introduction

One of the major challenges in automating the analysis and verification
of programs comes with the presence of loops. Reasoning about such
programs requires inferring and proving non-trivial properties that de-
scribe the loop behavior. Loop properties can be categorized into two
classes: (i) functional properties that describe the loop behavior on pro-
gram states and summarize, e.g., partial correctness properties of the
loop, and (ii) temporal properties that focus on the iterative behavior
of the loop, in particular its termination. To analyze loops and reason
about their behavior, it is often useful to consider properties that blur
the distinction between those two categories, such as safety and liveness
properties. While there has been tremendous work on analyzing and ver-
ifying program loops, see e.g., [45, 58, 64,72, 82, 87, 98], traditional means
to reason about imperative programs are still poorly equipped to deal
with both types of properties in a uniform manner. Complex functional
properties are commonly expressed as program assertions featuring quan-
tifiers. For example, the program reverse given in Figure 3.1 copies the
elements of an array a to an array b, reversing their order. To specify
this behavior, we need to use a universally quantified property, e.g., the
post-condition:

∀j (0 ≤ j < a.size =⇒ b[j] ≈ a[a.size− 1− j])

In some cases, we even need to use properties with quantifier alternations
to give precise program specifications. The program find-max-up-to
(also given in Figure 3.1) computes, for every position of an array a, the
maximum value stored in a up to that position, and stores that value in
b. One of the properties that describe its specification is:

∀j∃k (0 ≤ j < a.size =⇒ b[j] ≈ a[k])

These quantified properties can be verified using, e.g., Hoare logic. On
the other hand, temporal properties are best expressed in some form of
temporal logic, which usually restricts the use of quantifiers. Further-
more, most verification techniques require program annotations such as
invariants and termination measures to be provided by the programmer,
which limits their potential for automation.

In this paper, we present a framework to verify properties that combine
functional and temporal aspects. The method is based on the first-order
language of extended expressions, which provides a rich way to express
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i := 0 ;
while i < a.size do

b[i] :=
[a.size− 1− i];
i := i+ 1 ;

end

i := 0;
m := 0;
while i < a.size do

if a[i] > a[m]
then
m := i;

end
b[i] := a[m];
i := i+ 1;

end
(a) reverse (b) find-max-up-to

Figure 3.1. Motivating examples over arrays with first-order properties.

both temporal and functional loop properties, including full quantification
over loop iterations and program values. The semantics of a given loop can
be encoded as a formula in this language, thus providing an axiomatization
for the set of properties that hold for this loop (Section 3.3). Extended
expressions are more expressive than program assertions typically used in
program analysis and verification: program assertions reason about single
program states, whereas extended expressions correspond to properties
over sequences of states, i.e., program traces.

By expressing the loop semantics as a set of extended expressions,
we reduce various applications of program analysis and verification to
problems of first-order logic. In particular, we show that partial cor-
rectness and termination properties of loops can naturally be expressed
as extended expressions. Similarly, the problem of invariant generation
is a special instance of first-order reasoning about extended expressions.
Namely, by using consequence finding and symbol elimination over ex-
tended expressions in first-order theorem proving we automatically infer
first-order loop invariants (Section 3.4).

Analyzing loops in our framework is thus reduced to the problem
of reasoning about extended expressions. This problem can be solved
by automated reasoning engines, such as first-order theorem provers and
SMT solvers. We describe how encoding the loop semantics into extended
expressions can be optimized for these tools, in particular by limiting the
need to perform inductive reasoning and exploiting reasoning with both
theories and quantifiers (Section 3.5).

To illustrate the practical application of our framework, we imple-
mented our work in the tool QuIt, which translates programs into ex-
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tended expressions and uses automated reasoning engines to prove these
properties (Section 3.6). We evaluate our work on verification problems
taken from related works [23, 53] as well as from the array manipulat-
ing program category of the software verification benchmark suite SV-
Comp [19]. For that, we used QuIt in conjunction with the first-order
prover Vampire [84] and the SMT solvers CVC4 [9] and Z3 [50]. We
show that, unlike existing methods, our approach supports reasoning
about first-order loop properties with arbitrary use of quantifiers. We
support quantification over loop iterations and program values, gener-
ating and proving loop properties in full first-order theories. By using
our framework of extended expression, we are able to prove the safety
assertions of each example of Figure 3.1.
Contributions. Extended expressions were first introduced for invariant
generation in [82] and later used in [1] (Chapter 2 of this thesis) to prove
partial correctness of programs. The work presented in this paper extends
this line of work and brings the following contributions:

1. We formalize the semantics of the language of extended expressions;

2. We describe the axiomatization of the theory of extended expres-
sions that hold for a given loop and prove its completeness (up to
completeness of the background theory);

3. We show how extended expressions can be used to express and verify
functional and temporal properties about programs, in particular
partial correctness and termination;

4. We prove the soundness of using symbol elimination for invariant
generation, based on extended expressions and consequence finding
in first-order theorem proving;

5. We experiment with different background theories, in particular
arrays and natural numbers, and compare different provers on these
encodings.

3.2 Preliminaries

3.2.1 First-Order Logic

We consider standard many-sorted first-order logic modulo a background
theory. We denote the theory with T and its signature with ΣT . We as-
sume that ΣT includes sorts, equality ≈ over each sort and the interpreted
functions and predicates of linear arithmetic 0, 1,+, <. For example, in
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one set of our experiments, T is the combined theory of linear integer
arithmetic and arrays. We assume a given domain, and a mapping of
the symbols in ΣT to this domain. Any interpretation that respects that
mapping is called a T -interpretation. Semantic consequence under T is
denoted A �T B, i.e., any T -interpretation that satisfies A satisfies B.

We call a closed first-order formula a sentence. The valuation of
sentences is defined in the usual way. In particular for the valuation of
quantified sentences, we consider extensions of interpretations to variables:
given an interpretation I, we denote by I[x← d] the interpretation that
extends I by mapping the variable x to the domain value d. The sentence
∀x. ϕ (resp. ∃x. ϕ) is true in I if ϕ is true in I[x← d] for any (resp. some)
value d of the appropriate domain.

3.2.2 Program Semantics

Throughout this paper, we assume a given loop L = (C, π), where π is a
program corresponding to the loop body and C is a Boolean expression
representing the loop condition. The finite set of program locations1

occurring in π and C is denoted by Loc.
We do not consider a particular programming language for π. Instead,

we only rely on the denotational semantics of π, defined as a transition
relation on program states. A state is a mapping from program locations
to values of the appropriate sort. The semantics of π is described by the
relation Sπ: for any pair of states (σ, σ′), the pair belongs to Sπ if the
execution of π in state σ can lead to state σ′. If π is a deterministic
program, Sπ is a function, but in general we do not assume this property.
We require Sπ to be total, but this does not limit our framework to
loops with terminating bodies. If the loop body π is not guaranteed to
terminate, we can use a special state σ⊥ to represent non-terminating
computations, with the requirement that (σ⊥, σ) ∈ Sπ if and only if
σ = σ⊥.

Definition 1 (L-sequence). An L-sequence is an infinite sequence of
states σ0, σ1, . . . such that for any natural number i, (σi, σi+1) ∈ Sπ.

The set of L-sequences corresponds to all possible executions of the
loop L. A non-terminating loop execution corresponds to an L-sequence in
which the condition C is true in all states σi. Terminating loop executions
correspond to a prefix σ0, . . . , σk of an L-sequence such that the condition
C is true in the states σ0 to σk−1 and false in σk. The requirement

1We do not use the term “program variables”, in order to avoid confusion with
variables occurring in formulas.
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on Sπ to be total is necessary so that L-sequences only include infinite
sequences (which is needed to provide a full interpretation of the language
of extended expressions, see Section 3.3.1).

In practice, for most languages, Sπ can easily be computed when π
does not itself contain loops. In the presence of nested loops, it is possible
to rely on an over-approximation of the actual semantics relation. If
invariants are given for the nested loop, they can be used to improve
the accuracy of the approximation. This approach is sound in the sense
that, for every possible execution of the loop, there exists an L-sequence.
However, in the rest of this paper, we assume that Sπ is exact, and for
concrete examples, we consider only non-nested loops.

3.2.3 Language of Assertions

The central idea of our work is the use of a language of extended expres-
sions in which formulas can express properties of executions of the loop
L, i.e., L-sequences. Extended expressions are more expressive than the
kind of assertions traditionally used in program verification: program
assertions express properties of a single program state, whereas extended
expressions describe sequences of states (that is, traces). To establish a
correspondence between extended expressions and assertions, we formally
define a language for assertions, denoted by Lasrt .

The signature of the language Lasrt is ΣT ∪ Σasrt, where Σasrt is the
set that includes a constant symbol µl : τ for every location l in Loc,
where τ is the sort corresponding to the type of the location l.

Definition 2. Given a program state σ, the σ-interpretation is the unique
interpretation I for Lasrt such that:

1. I is a T -interpretation;

2. I(µl) = σ(l) for each program location l ∈ Loc.

If a sentence F is true in the σ-interpretation, we write �σ F . Using
Hoare triple notation, we write {P}π {Q} to denote that, for any state
σ, if �σ P , then for any state σ′ such that (σ, σ′) ∈ Sπ, �σ′ Q.

Definition 3. Lasrt is said to be expressive with respect to π if for every
formula F in Lasrt , there exists a sentence preπ(F ) with the following
property: for states σ, if F is true in the σ-interpretation (possibly ex-
tended to some variables), then, for all states σ′, preπ(F ) is true in the
(similarly extended) σ′-interpretation if and only if (σ′, σ) ∈ Sπ.
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Remark 1. The above definition indicates that Lasrt can be used to express
the weakest pre-condition of π. It is not possible to prove this property
without limiting π to specific programming constructs and specifying the
theory T , but in practice many assertion languages are expressive. We
note that, as in [101], we could define the expressivity of Lasrt by requiring
the existence of a strongest post-condition.

3.3 Extended Expressions

We now define the first-order language of extended expressions. The
semantics of a program can be expressed in this language and used further
as an axiomatization for the set of valid program properties.

3.3.1 Syntax and Semantics

The language of extended expressions is denoted Lextd . Its signature is
ΣT ∪ Σextd, where Σextd includes, for every location l in Loc, a function
symbol νl : N → τ , where τ is a sort corresponding to the type of the
location l. We call these symbols extended symbols and use the notation
ν

(i)
l to denote the application of an extended symbol νl to a term i. The
semantics of Lextd is based on the possible executions of the loop L.

Definition 4. Given an infinite sequence of states σ̄ = σ0, σ1, . . . (that is
not required to have the properties of an L-sequence), the σ̄-interpretation
is the unique interpretation I such that:

1. I is a T -interpretation;

2. I(νl) = fl for each location l ∈ Loc, where fl is a function such
that for any i ∈ N, fl(i) = σi(l).

If, for a sequence σ̄, a sentence F in Lextd is true under the σ̄-
interpretation, we write �σ̄ F . If for all L-sequences σ̄, we have �σ̄ F ,
then we say that F is L-valid, denoted �L F . Intuitively, L-valid sentences
are the properties that are true for all executions of L.

3.3.2 Relativised Formulas

We now describe how to obtain a formula in Lextd corresponding to an
assertion in Lasrt .

Definition 5 (Relativised formula). Given a (possibly open) formula F
in Lasrt and a term t of sort N, we define the relativised formula, denoted
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F (t), as the formula obtained by replacing every occurrence of a symbol
µl ∈ Lasrt from F by the term ν

(t)
l .

For example given a term i of sort N and a formula F = ∃x. µl ≈ 2×x,
the relativised formula F (i) is ∃x. ν(i)

l ≈ 2× x. The relativised formula is
in Lextd , and the set of variables occurring free in it is exactly the set of
variables occurring free in F or in t.

Lemma 1 (Semantics of relativised formula). Let F be a formula in
Lasrt , σ̄ an infinite sequence of states, and m a natural number. Let I
denote the σ̄-interpretation. The value of F (t) under I[t← m] is identical
(for any interpretation of the free variables) to the value of F under the
σm-interpretation.

Proof. By induction on the syntactic structure of F . For the base case,
it is easy to check that any term in F has the same interpretation as the
corresponding term in the relativised formula.

3.3.3 Axiomatization of Valid Loop Properties

Let us consider the theory of L-valid sentences, i.e., the set of sentences
F ∈ Lextd such that �L F . In order to axiomatize this theory, we need
to encode in Lextd the semantics of π, and thus describe L-sequences.
Provided that Lasrt is expressive with respect to π, the semantics of the
loop (ignoring its condition) can be described by the following axiom:

∀x̄l i
(
S(i+1) ⇒ preπ(S)(i)

)
(StepL)

where S is the formula
∧
l µl ≈ xl, and x̄l is a set of distinct variables

(one for each location l ∈ Loc).
For example, let us consider the following loop:

while a 6= b do
if a > b then

a := a− b;
else

b := b− a;
end

end

The set of locations read or modified by the loop is {a, b}, therefore
the formula S is x ≈ µa ∧ y ≈ µb. Using a typical predicate transformer
calculus, we can compute the weakest pre-condition preπ(S) = (µa >
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µb =⇒ x ≈ µa − µb ∧ y ≈ µb) ∧ (¬µa > µb =⇒ x ≈ µa ∧ y ≈ µb − µa).
Therefore the axiom StepL for this particular loop is

∀xyi
(
x ≈ ν(i+1)

a ∧ y ≈ ν(i+1)
b =⇒(

ν
(i)
a > ν

(i)
b =⇒ x ≈ ν(i)

a − ν(i)
b ∧ y ≈ ν

(i)
b

)
∧
(
¬ν(i)

a > ν
(i)
b =⇒ x ≈ ν(i)

a ∧ y ≈ ν(i)
b − ν

(i)
a

))
.

We see that StepL can equivalently be expressed without using variables
for locations, in this case:

∀i
(
ν

(i)
a > ν

(i)
b =⇒ ν

(i+1)
a ≈ ν(i)

a − ν(i)
b ∧ ν

(i+1)
b ≈ ν(i)

b

)
∧
(
¬ν(i)

a > ν
(i)
b =⇒ ν

(i+1)
a ≈ ν(i)

a ∧ ν(i+1)
b ≈ ν(i)

b − ν
(i)
a

)
.

This simplification is desirable in practice as it limits the number of
quantifiers. We will however consider the syntactic form presented above
in order to keep the presentation simple.

Lemma 2 (Soundness). �L StepL.

Proof. Let σ̄ = σ0, σ1, . . . be an L-sequence and I the σ̄-interpretation,
we show that StepL is true in I.

Let m be a natural number and let d̄ be values of the domain corre-
sponding to variables x̄l. Let I ′ be the interpretation I[i← m+1, x̄l ← d̄].
If S(i+1) is false in I ′, the formula S(i+1) =⇒ preπ(S)(i) is true in I ′.
Otherwise, by Lemma 1, it must be the case that S is true in the σm+1-
interpretation (extended with the interpretation d̄ of the free variables x̄l).
Since (σm, σm+1) ∈ Sπ, we have that �σm

preπ(S), therefore preπ(S)(i)

is true in I ′. The formula StepL is true in I for any interpretation of its
quantified variables.

Lemma 3 (Completeness). Let F be a sentence in Lextd such that �L F ,
then StepL �T F .

Proof. Let I be a T -interpretation that satisfies StepL. We define σ̄ =

σ0, σ1, . . . to be the infinite sequence of states such that for any number i
and any program location l ∈ Loc, σi(l) = fl(i), where fl is I(l). Clearly
I is the σ̄-interpretation. Let us show that σ̄ is a L-sequence.

Letm be a number, and let d̄ denote the values of all the program loca-
tions l ∈ Loc in state σm+1. Let I ′ be the interpretation I[i← m, x̄l ← d̄].
By choice of d̄, �m+1 S with the σm+1-interpretation extended with
[x̄l ← d̄]. Thus by Lemma 1, S(i+1) is true in I ′. Since I ′ satisfies StepL,
preπ(S)(i) is in particular true in I ′. By Lemma 1, we have �σm preπ(S)
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(with the same extension of the σm-interpretation as before). By defini-
tion of preπ(S), this implies (σm, σm+1) ∈ Sπ, therefore σ̄ satisfies the
definition of an L-sequence.

Since I is a σ̄-interpretation derived from an L-sequence, it must
satisfy F .

Theorem 1 (L-validity). For any sentence F in Lextd , �L F if and only
if StepL �T F .

Proof. One direction of the equivalence is given by Lemma 3. For the
other direction, let σ̄ be an L-sequence and I the σ̄-interpretation. By
Lemma 2, I is a model of StepL. In addition, I is a T -interpretation,
therefore by the assumption it is also a model of F .

Remark 2. The theory of L-valid sentences is a superset of the theory T .
Therefore in order for that theory to be complete, T must be complete as
well. Theorem 1 shows that this is indeed a sufficient condition. In that
sense, it can be seen as a result of relative completeness.

3.4 Applications of Extended Expressions

We now detail how applications of program analysis and verification can
be expressed as problems over extended expressions. In particular, we
show that proving partial correctness or termination of programs can
be reduced to proving properties of extended expressions. Further, the
task of invariant generation can be solved by using consequence finding
and symbol elimination in first-order theorem proving over extended
expressions.

3.4.1 Verifying Partial Loop Correctness

The partial correctness of the loop L with respect to a pre-condition P
and a post-condition Q (both sentences in Lasrt) and the loop condition
C can be expressed as a sentence in Lextd :

∀n
(
P (0) ∧ ∀m

(
m < n =⇒ C(m)

)
∧ ¬C(n)

)
⇒ Q(n) (Correct)

Lemma 4 (Partial correctness of the loop). If �L Correct, then for any
state σ satisfying P , any terminating execution of the loop L starting in
σ leads to a state that satisfies Q.
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Proof. Let σ0, . . . , σk be a finite sequence of states corresponding to a
terminating execution of L, such that σ0 = σ. For any two consecutive
states σi and σi+1 in the sequence, (σi, σi+1) ∈ Sπ. Let σ̄ be an L-
sequence such that σ0, . . . , σk is a prefix of σ̄, and I the σ̄-interpretation.
By the assumption, I is a model of Correct. Let I ′ be the interpretation
I[n← k].

By �σ0
P and Lemma 1, we have that P (0) is true in I ′. By property

of the finite execution of the loop σ0, . . . , σk, the loop condition C is true
in every state of the sequence except the last. Therefore, �σk

¬C and
�σi C for any number i such that i < k. Using Lemma 1 we can check that
∀m

(
m < n =⇒ C(m)

)
and ¬C(n) are true in I ′. Consequently Q(n) is

true in I ′, and by Lemma 1, �σk
Q, that is, the final state of the execution

satisfies Q.

3.4.2 Termination, Safety, Liveness

Similarly, proving the termination of L under a pre-condition P can be
reduced to checking the L-validity of the sentence

P (0) ⇒ ∃n.¬C(n) (Termin)

Lemma 5 (Termination of the loop). If �L Termin, then for any state σ
satisfying P , any execution of the loop L starting in σ terminates.

Proof. By contradiction let σ̄ be an L-sequence corresponding to a non-
terminating execution of L, i.e., all its states σi verify �σi

C, and such
that σ0 = σ. Let I be the σ̄-interpretation. Since �σ0

P , by Lemma 1,
P (0) is true in I, and since I is a model of Termin, it is in particular
a model of ∃n.¬C(n). By Lemma 1 there exists a number k such that
�σk
¬C, which contradicts our hypothesis.

Finally, it is possible to express safety and liveness properties as ex-
tended expressions. Given an assertion A, the safety property with respect
to A is

∀n.¬A(n) (Safe)

and the liveness property

∀m∃n
(
m < n ∧A(n)

)
(Live)

It is easy to check that these formulas correspond to the expected semantic
properties of the loop, in a fashion similar to the proofs of lemmas 4 and 5.
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3.4.3 Invariant Generation Via Symbol Elimination

Our framework provides a way to verify the correctness of an iterative
program without the explicit use of invariants. Nevertheless, it can be
useful to obtain loop invariants for the program, e.g., to gain some insight
in the behavior of the loop or to verify it using another tool, which typi-
cally requires invariants in the form of user annotations. Our framework
can be used to derive invariants as logical consequences of the extended
expressions.

In program verification, the notion of invariant typically refers to in-
ductive invariants, i.e., assertions F such that {C ∧F}π {F}. In practice,
interesting invariants are those that hold at the start of the loop. There-
fore in the presence of a pre-condition P , we wish to find invariants F
such that P �T F . Given these two requirements, we use the following
definition:

Definition 6 (P -invariant). Given a sentence P in Lasrt , a sentence F
in Lasrt is a P -invariant if for any prefix σ0, . . . , σk of an L-sequence such
that �σ0 P and �σi C for any number i < k, then any state σ of that
prefix verifies �σ F .

Intuitively, if an execution of the loop L starts in a state satisfying P ,
every state of this execution satisfies F , up to and including the final state
if the loop terminates. It is easy to show that an inductive invariant I is
a P -invariant for any sentence P such that P �T I. Conversely however,
not all P -invariants F are inductive: there may exist a pair of states
(σ, σ′) that violates {C ∧ F}π {F}, but only if σ is not reachable in any
L-sequence that starts with a state satisfying P .

Lemma 6. Let P and F be sentences in Lasrt . Let Inv denote the sentence

∀n
(
P (0) ∧ ∀m

(
m < n =⇒ C(m)

)
=⇒ F (n)

)
(Inv)

If �L Inv, then F is a P -invariant.

Proof. Let σ̄ be an L-sequence such that �σ0 P and k be a number such
that �σi

C, for any number i < k. Let I be the σ̄ interpretation and j
be a number such that j 6 k. Since I[n ← j] is a model of Inv, it is in
particular a model of F (n). Therefore, by Lemma 1, �σj

F .

Lemma 6 provides a way to check that a given sentence is a P -invariant.
More interestingly, it also gives the basis of a procedure to generate P -
invariants. This procedure was first introduced in [82] but never proven
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sound until now. We outline it here again in order to provide a formal
argument for its soundness based on Lemma 6.

We have so far only considered reasoning about extended expressions.
In order to generate P -invariants, we must now turn our attention to
assertions, i.e., formulas in Lasrt . Firstly, let us observe that for any
formula F in Lasrt and any term t of sort N, the relativised formula F (t)

is equivalent to
∧
l ν

(t)
l ≈ µl =⇒ F (regardless of the interpretation of

the symbols µl). Thus Inv is equivalent to

∀n

(
P (0) ∧ ∀m

(
m < n =⇒ C(m)

)
∧
∧

l∈Loc

ν
(n)
l ≈ µl =⇒ F

)

Secondly, if F is a closed formula (in particular, not featuring any
occurrence of the variable n), Inv can be rewritten so that the quantifier
is moved to the antecedent

∃n

(
P (0) ∧ ∀m

(
m < n =⇒ C(m)

)
∧
∧

l∈Loc

ν
(n)
l ≈ µl

)
=⇒ F

Let us denote by InvGen the sentence

∃n

(
P (0) ∧ ∀m

(
m < n⇒ C(m)

)
∧
∧

l∈Loc

ν
(n)
l ≈ µl

)
(InvGen)

By Theorem ??, the condition in Lemma 6 is equivalent to StepL ∪
InvGen �T F . In order to generate P -invariants, it is therefore enough to
find consequences (under theory T ) of StepL ∪ InvGen. Theorem provers
based on saturation provide a natural way to perform consequence finding.
The sentences StepL and InvGen are clausified (in the process, a constant
symbol n corresponding to the existentially quantified variable is intro-
duced by Skolemization) and the resulting set of clauses is saturated: new
clauses are repeatedly produced by (sound) inferences between clauses
of the set, and the conclusion added to the set. Typically this process
is used to derive the empty clause as part of a proof by contradiction.
However in this case the initial set of clauses has a model, therefore the
process will only stop if no new non-redundant clauses can be derived.

Any clause generated during saturation by a sound calculus is a logical
consequence of the original set of clauses. To be a P -invariant, it must
only contain symbols from Lasrt . Unguided consequence finding is unlikely
to yield such formulas consistently, so we take advantage of the reduction
ordering of the superposition calculus to orient the search. Superposition
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is a family of calculii parametrized by a reduction ordering on terms.
This ordering is used to restrict the number of possible inferences while
preserving the refutational completeness of the calculus. For example the
superposition rule

t ≈ s ∨ C L[t′] ∨ D
(L[s] ∨ C ∨ D)θ

which uses an equality literal t ≈ s to rewrite a term t′ (unifiable with t
under a most general unifier θ), is applied only if sθ 6� tθ according to the
term ordering. By choosing the right term ordering, we can ensure that
symbol-eliminating inferences are favored by the prover. In particular,
terms featuring extended symbols should be larger than others. One
possibility to accomplish this is to choose a Knuth-Bendix term ordering
in which extended symbols are given a large weight and a large precedence.

The set of clauses resulting from the clausification of InvGen contains,
for each program location l, the unit clause ν(n)

l = µl, therefore any clause
featuring a term unifiable with ν(n)

l may be used in a symbol eliminating
inference. Every time a new clause is generated that does not feature an
extended symbol, it may be reported as an invariant. Optionally, it may
be preferable to report such clauses only if they feature symbols from
Σasrt. Clauses that do not include such symbols are theory tautologies:
they are technically invariant but not very useful for program verification.

3.5 Automated Reasoning with Extended Ex-
pressions

As shown in Section 3.4, analyzing loops in our framework is reduced to
the problem of reasoning about extended expressions, which can be solved
by automated reasoning engines, such as first-order theorem provers and
SMT solvers. In this section we describe how encodings of the loop
semantics into extended expressions can be optimized for these tools.

3.5.1 Avoiding Induction

Theorem ?? provides a powerful way to reduce loop analysis and verifica-
tion tasks to the problem of proving that a certain extended expression
is entailed by StepL. Unsurprisingly, induction often plays a key role in
these proofs. StepL essentially describes the semantics of one arbitrary
iteration of the loop, whereas loop analysis is often concerned with prov-
ing properties of arbitrary iterations, for example for all iterations or for
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a symbolic iteration in which the loop condition is negated for the first
time.

Extending automated theorem provers with inductive reasoning is a
very challenging problem, with some preliminary yet still limited results
in [46, 74, 136]. In order to avoid inductive reasoning and thus make
our framework more friendly to automated provers, we use a number of
so-called trace lemmas in addition to StepL. These lemmas correspond
to valid properties of the loop.

Definition 7. A trace lemma for a given loop is a sentence F such that
StepL �T F .

For any set of trace lemmas LemL, it is obvious that StepL ∪ LemL is
T -equivalent to StepL. Hence, StepL can be replaced by StepL ∪ LemL in
loop analysis, in particular in the applications described in Section 3.4.
While this substitution makes no difference on a theoretical level, a careful
choice of LemL often leads to a dramatic improvement of the performance
of automated reasoning tools. The choice of trace lemmas to include in
LemL depends on the theory T , the class of programs targeted, and the
type of properties that one wishes to analyze. Consider for example the
extended expression

∀ij
(
i < j =⇒ ν

(i)
l 6 ν

(j)
l

)
Many loops include so-called monotonically increasing locations l for
which this property would hold. In addition, the property is likely to be
useful in many verification tasks. On the other hand, proving that it is
entailed by StepL requires reasoning by induction and hence automated
theorem provers are unlikely to discover it. For these reasons, the property
is a good candidate trace lemma: every time we perform a verification
task, we will first check that the property holds for each location in the
given loop, and if so, add it to the set of trace lemmas that will later be
used in conjunction with StepL.

Proving that a given sentence F is a trace lemma of L is in general as
difficult as proving the L-validity of other extended expressions. Therefore,
we rely on sound but incomplete methods to derive trace lemmas of L.
Currently in our work, the verification of trace lemmas is accomplished
by lightweight static analysis techniques. For example, the property
described above is added to the set of trace lemmas when all assignments
to the location l are increments by a positive constant. A more general
method to check whether a sentence is a trace lemma is to reduce it to
a minimal condition on one iteration of the loop body π. The property

58



given in example holds if and only if {µl ≈ x}π {µl > x} for some variable
x. Simple properties such as these can often be verified automatically.
This hints at a generic way to describe trace lemmas and use them: (i)
an extended expression F (often a property universally quantified over
iterations) is first proven to be equivalent to an easily verifiable condition
on the loop body in the form of a Hoare triple (ii) any time the condition
is verified, F is included in LemL.

A complete description of the set of trace lemmas used in our work is
given in an earlier publication [80] (reproduced as part of Chapter 2 in this
thesis) . In general, our trace lemmas fall under two categories: properties
of monotonically increasing or decreasing locations and properties of array
updates.

3.5.2 Encoding of Natural Numbers

The theory T must include a sort of natural numbers, as well as the
predicates and functions of linear arithmetic that are needed to formulate
the axiom StepL. However, not all automated tools for reasoning in
first-order logic support the theory of natural numbers. Therefore we
experimented with two encodings of natural numbers. Our first encoding
uses integers, where every axiom or goal is modified to ensure that only
non-negative integers are considered. The second encoding is based on a
term algebra generated by two constructors, a constant zero and a unary
function succ. The predicate < is recursively axiomatized.

Both encodings will be handled differently by provers, and yield differ-
ent proofs. Linear arithmetic is a staple of reasoning modulo theory, and
all SMT solvers include a solver for it. For first-order theorem provers
based on saturation, reasoning about linear arithmetic is traditionally
accomplished by including a (partial) axiomatization in the set of clauses
to saturate. Recently, these provers have taken advantage of SMT solvers
to perform theory reasoning on ground clauses [110] as well as non-ground
clauses [112]. Regarding term algebras, the SMT solvers Z3 and CVC4
both include theory solvers for the ground theory. The automated the-
orem prover Vampire allows reasoning with term algebras, based on a
conservative extension of the theory complemented by dedicated inference
rules [26,81] (Chapters 4 and 6 in this thesis).

In addition, the two encodings allow the expression of different proper-
ties. The integer-based encoding can more easily express relations between
integer-valued program locations and iteration numbers. For example, if
a location l of the loop satisfies {µl ≈ x}π {µl ≈ x+ c} for some variable
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x and some constant c then the following trace lemma can be used:

∀i
(

0 6 i =⇒ ν
(i)
l ≈ ν

(0)
l + i× c

)
If natural numbers are encoded as algebraic terms, an equivalent trace

lemma cannot be expressed without extending the theory to include a
function mapping natural numbers to integers. Instead we can use a
weaker property, for example (if c 6= 0):

∀ij
(
ν

(i)
l ≈ ν

(j)
l =⇒ i ≈ j

)

3.5.3 Representation of Arrays

Unlike scalar program locations, the logical encoding of arrays is not
straightforward. In earlier approaches [82], we used the following func-
tional representation of arrays. In Lasrt , arrays are represented as func-
tions from the sort of indices to the sort of values. In Lextd , arrays are
represented by binary functions: the first argument of the function takes
an iteration and the second an index, so that a(i, p) denotes the value
stored at position p at the ith iteration.

Later experiments suggested that using a dedicated theory of arrays
might make it easier to prove properties of programs [32]. In this setting,
we have one sort τ for each type of array, equipped with operations store

and select that represent writing to and reading from an array, respectively.
Array locations are then treated like other locations: in Lasrt they are
represented by constants of type τ , and in Lextd they are represented by
a function from N to τ .

3.6 Experiments

3.6.1 Implementation

We implemented our work in the tool QuIt2. QuIt consists of 12000 lines
of C++ code. Inputs to QuIt are programs written in a guarded command
language. In addition to the program itself, the input also includes pre-
and post-conditions (P and Q) in the form of first-order logic assertions
with unbounded quantification. QuIt converts this program to a first-
order problem, according to one of its three modes of operation:

2http://www.cse.chalmers.se/~simrob/downloads/quit.tar.gz
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1. Verification mode, to prove partial program correctness (Section 3.4.1).
In this setting, the first-order problem produced by QuIt contains
the hypothesis StepL, the trace lemmas and theory axioms, and the
goal Correct to be proven.

2. Termination mode, to prove program termination (Section 3.4.2).
In this case, QuIt generates a similar problem as in its verification
mode, but with the goal Termin.

3. Invariant generation mode, to generate invariants by symbol elimina-
tion (Section 3.4.3). The problem produced contains the hypothesis
InvGen, trace lemmas and theory axioms. Extended symbols are
marked for symbol elimination. No goal to be proven is provided,
since the aim is to produce consequences of properties of extended
expressions, rather than to find a proof.

QuIt is partially based on code from [80] that was previously inte-
grated in the first-order theorem prover Vampire. We made QuIt a
standalone tool that can interact with various provers, including both
SMT solvers and first-order theorem provers. For that, QuIt outputs
problems in the TPTP syntax of first-order theorem provers [126], in par-
ticular in the TFF input representation of many-sorted first-order logic.
Further, QuIt also generates its output in the SMT-LIB input syntax
of SMT solvers [11]. As such, problems generated by QuIt in the verifi-
cation and termination modes can be passed to any tool that supports
the TPTP and/or SMT-LIB syntax. Currently, only Vampire is able to
perform symbol elimination, which is necessary to handle the invariant
generation problems generated by QuIt.

3.6.2 Experimental Results

To evaluate our implementation, we collected benchmarks from the work
of [53] and the SV-Comp repository of software verification benchmarks [19].
We converted these examples manually into our input-format. Since our
approach establishes program correctness rather than searching for coun-
terexamples, we omitted benchmarks where assertions are violated. We
also omitted examples not supported by our framework due to language
features such as multiple loops or memory management. Lastly, we re-
moved duplicate problems differing from other examples only in the names
of program locations. As a result, our benchmarks include 55 test cases,
all featuring arrays.

The assertion language used in these benchmarks does not allow quan-
tification and relies on loops to encode some quantified properties. For
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Benchmark Vampire CVC4 Z3
A+T A+I F+T F+I A+T A+I F+T F+I A+T A+I F+T F+I

absolute-prop1 X X X X t t t t t t t t
absolute-prop2 X X t X t t t t t t t t
atleast-one-iteration X t X t t t t t X X X X
both-or-none X X X X t t t t t t t t
check-equal-set-flag t t t t t t t t t t t t
copy X X X X t t t t t t t t
copy-nonzero-prop1 t t t t t t t t t t t t
copy-nonzero-prop2 t t t t t t t t t t t t
copy-odd X X X X t t t t t t t t
copy-partial X X X X t t t t t t t t
copy-positive t t t t t t t t t t t t
copy-two-indices t X t X t t t t t t t t
find1-prop1 X t X t t t t t X X X X
find1-prop2 X t X t t t t t t t t t
find1-prop3 X X X X t t t t t t t t
find2-prop1 X X X X X t X t X X X X
find2-prop2 X X X X t t t t t X t t
find2-prop3 X X X X t t t t t X t t
find-max t t t t t t t t t t t t
find-max-up-to-prop1 t t t t t t t t t t t t
find-max-up-to-prop2 X X X X t t t t t t t t
find-max-from-second t t t t t t t t t t t t
find-min t t t t t t t t t t t t
find-min-up-to X X X X t t t t t t t t
find-sentinel X X X X t t t t t X t t
find-two-max-prop1 t t t t t t t t t t t t
find-two-max-prop2 t t t t t t t t t t t X
in-place-max t t t t t t t t t t t t
increment-by-one-prop1 X X X X t t t t t t t t
increment-by-one-prop2 X X t X t t t t t t t t
indexn-is-arraylength X X X X t t t t X X X X
init X X X X t t t t t t t t
init-conditionally-prop1 t t t t t t t t t t t t
init-conditionally-prop2 t t t t t t t t t t t t
init-even t X t X t t t t t X t t
init-non-constant X X X X t t t t t t t t
init-partial X X X X t t t t t X t t
init-previous-plus-one t t t t t t t t t t t X
max-prop1 X X X X t t t t t t t t
max-prop2 X X X X t t t t t t t t
merge-interleave-prop1 t X t X t t t t t t t t
merge-interleave-prop2 t t t t t t t t t t t t
palindrome t t t t t t t t t t t t
partition t t t t t t t t t t t t
partition-init t t t t t t t t t t t t
push-back-prop1 t X t X t t t t t X t X
push-back-prop2 t X t X t t t t t t t t
reverse X X X X t t t t t t t t
set-to-one X t X t t t t t X X X X
str-cpy X X X X t t t t t t t t
str-len X X X X t t t t t t t t
swap-prop1 t t t t t t t t t t t t
swap-prop2 t t t t t t t t t t t t
vector-addition X X X X t t t t t t t t
vector-subtraction X X X X t t t t t t t t
Total 35 1 13
Unique 24 0 2

Table 3.1. Results of theorems provers on QuIt-generated partial cor-
rectness problems. Success is denoted by X and timeout by t.
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example, the program fragment:

for(int i = 0; i < a.length; + + i) {assert(F(a[i]))}

is used to encode the universal property

∀i (0 6 i < a.length =⇒ F (a[i]))

Using program code to encode first-order properties is however restrictive,
as only universally quantified properties over finite domains can be natu-
rally encoded. Since our framework supports unbounded quantification
in first-order properties, we used quantified assertions rather than loops
to describe the properties to verify.

To overcome the challenges of first-order reasoning with theories, quan-
tifiers and induction (see Section 3.5), in QuIt we used four different
encodings of the first-order background theory: (i) theory of arrays and
term algebras (denoted by A+T), (ii) theory of arrays and linear inte-
ger arithmetic (denoted by A+I), (iii) first-order theory of term algebras
with uninterpreted functions modeling arrays (denoted by F+T), and (iv)
first-order theory linear of integer arithmetic with uninterpreted functions
modeling arrays (denoted by F+I). That is, natural numbers were encoded
either by term algebra axioms or by a sound, but incomplete axiomati-
zation of linear integer arithmetic. By applying these four encodings to
our 55 examples, QuIt produced all together 220 examples for each of its
modes. To prove these examples, we interfaced QuIt with three solvers,
namely Vampire, CVC4 and Z3. We report on our experiments, which
were performed on an Intel Core i5 machine running at 2.9Ghz.

Proving partial correctness. For each choice of background theory
encoding, we used QuIt in the verification mode to construct a first-order
formalization of partial correctness (which took less than a second for any
benchmark) and then ran each of the provers on the resulting problem
with a timeout of 60 seconds. Our results are summarized in Table 3.1.
The first column of this table names the benchmark name as in SV-Comp.
For each solver, we then report on its result on the problem generated by
QuIt using one encoding of the background theory: X denotes success
(the prover proved the QuIt problem), while t denotes failure due to
time-out. Table 3.1 also reports on the total number of problems solved
by each prover, as well as on the number of problems that were uniquely
solved by only one prover.

Table 3.1 shows that Vampire outperforms both SMT solvers on
problems created by QuIt, regardless of the options chosen. This likely
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stems from the use of many quantified properties among the trace lem-
mas. Concerning the background theory and the choice of encoding, it is
difficult to identify a winning encoding. Each configuration was able to
uniquely solve some problems. This suggests that a portfolio approach
might be advisable: the different possible encodings of the problem can all
be generated, and proof attempts may be conducted by different provers,
possibly in parallel. In order to test the usefulness of trace lemmas, we
also ran the partial correctness experiment without including any such
lemmas, and instead only including the hypothesis StepL. Only 3 pro-
grams could be proven correct in this setting, demonstrating the crucial
role of trace lemmas.

Proving termination. We used QuIt in the termination mode to
construct a first-order encoding of program termination (which again
took less than a second for any benchmark). We ran each prover on the
resulting problem with a timeout of 60 seconds. Some of the 55 examples
differ only by their post-condition, which is irrelevant for termination, so
our termination benchmarks include 43 different programs. Vampire was
able to prove termination of 42 of these programs. The example for which
termination could not be proven is find1, in which the loop condition
depends on the value of a location set in the loop body. Z3 managed to
prove termination of 23 programs, whereas CVC4 did not solve any of the
termination problems. While our benchmarks do not yield challenging
termination problems, they correspond to common programming patterns.
We believe that the ability to check their termination automatically, in
the same framework used to verify correctness, is of great practical use.

Generating invariants. To generate invariants, we interfaced QuIt
only with Vampire since it is currently the only solver able to perform
symbol elimination over first-order properties. Since the problem created
in invariant generation mode is satisfiable, saturation may never termi-
nate, generating an infinite set of logical consequences. Therefore we ran
Vampire with a fixed time limit of 10 seconds on each QuIt problem.
Our experiments show that Vampire was able to find invariants for all
the problems. Depending on the background theory encoding used in
the QuIt problem, Vampire generated between 411 and as many as
11000 clauses within the time limit, each clause representing a loop invari-
ant. The criteria used to evaluate the quality of these invariants depends
largely on the application. To verify partial correctness with respect to
pre- and post-conditions P and Q, a common task is to use invariants to
prove that Q holds after the execution of the loop (typically one would
also need to prove that the invariant is true under P ; this is guaranteed
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by our definition of P -invariants). In order to test the quality of our
generated invariants for this application, we used the following procedure:
we constructed a new first-order problem containing the generated invari-
ants and the negation of the loop condition as hypotheses, and added the
post-condition as the goal to be proven. We then ran Vampire on the
resulting problems, by using it in portfolio mode with a time limit of 60
seconds.

For those benchmarks where partial correctness can be proven from
the invariants, we can analyze the resulting proof in order to gather some
interesting invariants. For example for program reverse (Figure 3.1) the
following invariant was generated and later used to prove correctness:

∀x (x < 0 ∨ ¬x < i ∨ b[(a.length− 1)− x] ≈ a[x])

We were able to prove partial correctness from the generated invariants
for 21 programs in total, a subset of the programs for which we were able
to establish correctness using only extended expressions. The list of these
programs is given in Table 3.2. Programs for which the post-condition
could be proven by Vampire from the invariants generated are denoted
by X.

3.7 Related work

Our definition of the theory of L-valid sentences is reminiscent of modal
logics: we consider sentences that are true across a certain class of inter-
pretations (one interpretation of each possible execution of L), akin to
the multiple worlds used by Kripke semantics. However in our setting
there is no notion of accessibility between those different worlds. This
allows the use of first-order quantification, without the difficulties that are
inherent in defining semantics for first-order modal logic [57]. In addition,
automated reasoning for modal logics remains a difficult problem, despite
efforts in that direction [94].

Analyzing loops and generating quantified invariants has been ad-
dressed by a large number of approaches. One line of research iteratively
generates quantifier-free properties that are generalized into universally
quantified invariants. The work of [72] generates universally quantified
inductive invariants by iteratively inferring and strengthening candidate
invariants. The method uses SMT solving and is therefore restricted
to first-order theories with a finite model property. SMT-based invari-
ant generation is also performed in [64] and universal invariants with a
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Benchmark Vampire
A+T A+I F+T F+I

absolute-prop1 t t t t
absolute-prop2 t t t t
atleast-one-iteration t t t t
both-or-none t t t t
check-equal-set-flag t t t t
copy X X X X
copy-nonzero-prop1 t t t t
copy-nonzero-prop2 t t t t
copy-odd X X X X
copy-partial X X X X
copy-positive t t t t
copy-two-indices t t t X
find1-prop1 t t t t
find1-prop2 t t t t
find1-prop3 X X X X
find2-prop1 X X X X
find2-prop2 X X X X
find2-prop3 X X X X
find-max t t t t
find-max-from-second t t t t
find-max-up-to-prop1 t t t t
find-max-up-to-prop2 t t t t
find-min t t t t
find-min-up-to t t t t
find-sentinel t t t t
find-two-max-prop1 t t t t
find-two-max-prop2 t t t t
in-place-max t t t t
increment-by-one-prop1 X X X X
increment-by-one-prop2 t X t X
indexn-is-arraylength t X t X
init X X X X
init-conditionally-prop1 t t t t
init-conditionally-prop2 t t t t
init-even t t t t
init-non-constant X X t X
init-partial X X X X
init-previous-plus-one t t t t
max-prop1 t t t t
max-prop2 t t t t
merge-interleave-prop1 t X t X
merge-interleave-prop2 t t t t
palindrome t t t t
partition t t t t
partition-init t t t t
push-back-prop1 t X t t
push-back-prop2 t X t X
reverse t t t X
set-to-one t t t t
str-cpy X X X X
str-len X X X X
swap-prop1 t t t t
swap-prop2 t t t t
vector-addition t X t X
vector-subtraction X X X X

Total 14 20 13 21
Unique 0 0 0 2

Table 3.2. Results of Vampire on proving partial correctness using
invariants generated by symbol elimination.
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bounded number of universal quantifiers are inferred. In [2], Craig in-
terpolation over bounded loop executions is used to generate candidate
ground invariants and terms to be universally quantified in those invari-
ants. Candidate invariants are also used in the formula slicing approach
of [73]. In [23], templates of quantified invariants are used to reduce
the problem of quantified invariant generation to computing quantifier-
free invariants. Template invariants together with SMT-based constraint
solving is also used in [89] to generate universal invariants. Unlike these
works, we are not limited to universal invariants but can infer first-order
loop properties with alternations of quantifiers. First-order resolution has
previously been used to derive invariants with alternations of quantifiers
in [29]. In this work, the derivation is goal-oriented, whereas our tech-
nique does not require a post-condition to be given. The work of [98]
relies on Craig interpolation in superposition theorem proving to generate
quantified invariants. The approach is however restricted to universal
invariants.

Our use of trace lemmas to guide the automation shares some similarity
with template-based approaches for invariant generation [39, 63]. Our
work, however, does not require any assumptions on the syntactic shape
of the target invariants. Instead, assumptions are made about semantic
patterns that are often shared across many programs. The invariants
are not restricted to the shape of the trace lemmas, and the lemmas are
discovered automatically, without user guidance. Moreover, our approach
can be used with arbitrary first-order theories, even with theories that
have no interpolation property and/or a finite axiomatization.

Another line of work focuses on the design of specialized abstract
domains to represent and infer universal properties by abstract interpre-
tation. The fluid updates abstraction of [53] creates pair-wise points-to
relations over arrays and solves these constrains using SMT solving. The
array segmentation domain of [45] reasons about the contents of an array
by dividing it into consecutive subsets of array elements. These methods
are very expressive, but limited to their respective abstract domains, and
to universal invariants. For example, the abstraction domain used in [45]
would not be able to handle the program reverse from Figure 3.1. Rather
than performing a custom, domain-specific analysis, our work introduces
a generic first-order framework for deriving and proving first-order loop
properties.
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3.8 Conclusion

We described a logical framework for expressing and proving complex
properties of loops. Our framework is based on the first-order language of
extended expressions and supports full first-order quantification over both
program values and iterations. We showed how to use our work to auto-
mate various tasks of program analysis and verification, in particular by
using our approach in conjunction with automated reasoning techniques
in first-order logic. For future work, we plan to extend our program-
ming model by considering various background theories. For example,
the theory of term algebras could be used to reason about programs with
recursive data structures. Another interesting question is whether our
semantics of iterations can be extended to support nested and consecutive
loops in a way that remains tractable for automated theorem provers.
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Chapter 4

Coming to Terms with
Quantified Reasoning

Laura Kovács, Simon Robillard and Andrei Voronkov

Abstract. The theory of finite term algebras provides a natural frame-
work to describe the semantics of functional languages. The ability to
efficiently reason about term algebras is essential to automate program
analysis and verification for functional or imperative programs over alge-
braic data types such as lists and trees. However, as the theory of finite
term algebras is not finitely axiomatizable, reasoning about quantified
properties over term algebras is challenging.

In this paper we address full first-order reasoning about properties of
programs manipulating term algebras, and describe two approaches for
doing so by using first-order theorem proving. Our first method is a con-
servative extension of the theory of term algebras using a finite number
of statements, while our second method relies on extending the super-
position calculus of first-order theorem provers with additional inference
rules.

We implemented our work in the first-order theorem prover Vampire
and evaluated it on a large number of algebraic data type benchmarks,
as well as game theory constraints. Our experimental results show that
our methods are able to find proofs for many hard problems previously
unsolved by state-of-the-art methods. We also show that Vampire im-
plementing our methods outperforms existing SMT solvers able to deal
with algebraic data types.

Originally published in Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, volume 52, number 1,
pages 260-270. ACM, 2017.
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4.1 Introduction

Applications of program analysis and verification often require generating
and proving properties about algebraic data types, such as lists and
trees. These data types (sometimes also called recursive or inductive
data types) are special cases of term algebras, and hence reasoning about
such program properties requires proving in the first-order theory of term
algebras. Term algebras are of particular importance for many areas of
computer science, in particular program analysis. Terms may be used to
formalize the semantics of programming languages [34, 43, 62]; they can
also themselves be the object of computation. The latter is especially
obvious in the case of functional programming languages, where algebraic
data structures are manipulated. Consider for example the following
declaration, in the functional language ML:

datatype nat = zero | succ of nat;

Although the functional programmer calls this a data type declaration, the
logician really sees the declaration of an (initial) algebra whose signature
is composed of two symbols: the constant zero and the unary function
succ. The elements of this data type/algebra are all ground (variable-free)
terms over this signature, and programs manipulating terms of this type
can be declared by means of recursive equations. For example, one can
define a program computing the addition of two natural numbers by the
following two equations:

add zero x = x

add (succ x) y = succ (add x y)

Verifying the correctness of programs manipulating this data type usually
amounts to proving the satisfiability of a (possibly quantified) formula in
the theory of this term algebra. In the case of the program defined above,
a simple property that one might want to check is that adding a non-zero
natural number to another results in a number that is also different from
zero:

x 6= zero ∨ y 6= zero ⇒ add x y 6= zero

Note that depending on the semantics of the programming language, there
may exist cyclic terms such as the one satisfying the equation x ≈ succ(x),
or even infinite terms, but in a strictly evaluated language, only finite non-
cyclic terms lead to terminating programs. Since program verification is
in general concerned with program safety and termination, it is desirable
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to consider in particular the theory of finite term algebras, denoted by
TFT in the sequel.

The full first-order fragment of TFT is known to be decidable [96]. One
may hence hope to easily automate the process of reasoning about prop-
erties of programs manipulating algebraic data types, such as lists and
trees, corresponding to term algebras. However, properties of such pro-
grams are not confined strictly to TFT for the following reasons: program
properties typically include arbitrary function and predicate symbols used
in the program, and they may also involve other theories, for example
the theory of integer/real arithmetic. Decidability of TFT is however
restricted to formulas that only contain term algebra symbols, that is,
uninterpreted functions, predicates and other theory symbols cannot be
used. If this is not the case, non-linear arithmetic could trivially be
encoded in TFT , implying thus the undecidability of TFT . Due to the
decidability requirements of TFT on the one hand, and the logical struc-
ture of general program properties over term algebras on the other hand,
decision procedures based on [96] for reasoning about programs manipu-
lating algebraic data cannot be simply used. For the purpose of proving
program properties with symbols from TFT , one needs more sophisticated
reasoning procedures in extensions of TFT .

For this purpose, the works of [12,113] introduced decision procedures
for various fragments of the theory of term algebras; these techniques are
implemented as satisfiability modulo theory (SMT) procedures, in partic-
ular in the CVC4 SMT solver [9]. However, these results target mostly
reasoning in quantifier-free fragments of term algebras. To address this
challenge and provide efficient reasoning techniques with both quantifiers
and term algebra symbols, in this paper we propose to use first-order
theorem provers. We describe various extensions of the superposition
calculus used by first-order theorem provers and adapt the saturation
algorithm of theorem provers used for proof search.

Theory-specific reasoning in saturation-based theorem provers is typi-
cally conducted by including the theory axioms in the set of input formulas
to be saturated. Unfortunately a complete axiomatization of the theory of
term algebras requires an infinite number of sentences: the acyclicity rule,
which ensures that a model does not include cyclic terms, is described
by an infinite number of inequalities x 6≈ f(x), x 6≈ f(f(x)), . . . This
property of term algebras prevents us from performing theory reasoning
in saturation-based proving in the usual way.

As a first attempt to remedy this state of affairs, in this paper we
present a conservative extension of the theory of term algebras that uses
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a finite number of sentences (Section 4.4). This extension relies on the
addition of a predicate to describe the “proper subterm” relation between
terms. This approach is complete and can easily be used in any first-order
theorem prover without any modification.

Unfortunately, the subterm relation is transitive, so that the number
of predicates produced by saturation quickly becomes a burden for any
prover. To improve the efficiency of the reasoning, we offer an alternative
solution: extending the inference system of the saturation theorem prover
with additional rules to treat equalities between terms (Section 4.5).

We implemented our new inference system, as well as the subterm
relation, in the first-order theorem prover Vampire [84]. We tested our
implementation on two sets of benchmarks. We used 4170 problems de-
scribing properties of functional programs manipulating algebraic data
types; these problems were taken from [113]. This set of examples were
generated using the Isabelle inductive theorem prover [100] and trans-
lated by the Sledgehammer system [24]. Further, we also used problems
from [38] with many quantifier alternations over term algebras. When
compared to state-of-the-art SMT solvers, such as CVC4 and Z3 [50], our
experimental results give practical evidence of the efficiency and logical
strength of our work: many hard problems that could not be solved before
by any existing technique can now be solved by our work (see Section 4.6).
Contributions. The main contributions of our paper are summarized
below.

• We extend the theory TFT of finite term algebras with a subterm
relation denoting proper subterm relations between terms. We call
this extension T +

FT and prove that T +
FT is a conservative extension

of TFT . When compared to TFT , the advantage of T +
FT is that it is

finitely axiomatizable and hence can be used by any first-order theorem
prover. Moreover, one can combine T +

FT with other theories, going
even to undecidable fragments of the combined theory of term algebras
and other theories. As an important consequence of this conservative
extension, our work yields a superposition-based decision procedure for
term algebras (Section 4.4).

• We show how to optimize superposition-based first-order reasoning us-
ing new, term algebra specific, simplification rules, and an incomplete,
but simple, replacement for a troublesome acyclicity axiom. Our new
inference system provides an alternative and efficient approach to ax-
iomatic reasoning about term algebras in first-order theorem proving
and can be used with combinations of theories (Section 4.5).
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• We implement our work in the first-order theorem prover Vampire.
Our works turns Vampire into the first first-order theorem prover
able to reason about term algebras, and therefore about algebraic data
types. Our experiments show that our implementation outperforms
state-of-the-art SMT solvers able to reason with algebraic data types.
For example, Vampire solved 50 SMTLIB problems that could not be
solved by any other solver before (Section 4.6).

4.2 Preliminaries

We consider standard first-order predicate logic with equality. The equal-
ity symbol is denoted by ≈. We allow all standard boolean connectives
and quantifiers in the language. We assume that the language contains
the logical constants > for always true and ⊥ for always false formulas.

Throughout this paper, we denote terms by r, s, u, t, variables by
x, y, z, constants by a, b, c, d, function symbols by f, g and predicate sym-
bols by p, q, all possibly with indices. We consider equality ≈ as part of
the language, that is, equality is not a symbol. For simplicity, we write
s 6≈ t for the formula ¬(s ≈ t).

An atom is an equality or a formula of the form p(t1, . . . , tn), where
p is a predicate symbol and t1, . . . , tn are terms. A literal is an atom
A or its negation ¬A. Literals that are atoms are called positive, while
literals of the form ¬A are negative. A clause is a disjunction of literals
L1 ∨ . . . ∨ Ln, where n ≥ 0. When n = 0, we will speak of the empty
clause, denoted by �. The empty clause is always false.

We denote atoms by A, literals by L, clauses by C,D, and formulas
by F,G, possibly with indices.

A signature is any finite set of symbols. The signature of a formula
F is the set of all symbols occurring in this formula. For example, the
signature of ∀x. b ≈ g(x) is {g, b}. When we speak about a theory, we
either mean a set of all logical consequences of a set of formulas (called
axioms of this theory), or a set of all formulas valid on a class of first-order
structures. Specifically, we are interested in the theories of term algebras,
in which case we use the second meaning. When we discuss a theory, we
call symbols occurring in the signature of the theory interpreted, and all
other symbols uninterpreted.

By an expression E we mean a term, atom, literal, or clause. A
substitution θ is a finite mapping from variables to terms. An application
of this substitution to an expression (e.g. a term or a clause) E, denoted
by Eθ, is the expression obtained from E by the simultaneous replacement
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of each variable x in it, such that θ(x) is defined, by θ(x). We write E[s] to
mean an expression E with a particular occurrence of a term s. A unifier
of two expressions E1 and E2 is a substitution θ such that E1θ = E2θ. It
is known that if two expressions have a unifier, then they have a so-called
most general unifier (mgu) – see [120] for details on computing mgus.

4.3 The Theory of Finite Term Algebras

A definition of the first-order theory of term algebras over a finite signature
can be found in e.g. [122], along with an axiomatization of this theory
and a proof of its completeness. In this section we overview this theory
and known results about it.

4.3.1 Definition

Let Σ be a finite set of function symbols containing at least one constant.
Denote by T (Σ) the set of all ground terms built from the symbols in Σ.

The Σ-term algebra is the algebraic structure whose carrier set is T (Σ)

and defined in such a way that every ground term is interpreted by itself
(we leave details to the reader). We will sometimes consider extensions of
term algebras by additional symbols. Elements of Σ will be called term
constructors (or simply just constructors), to distinguish them from other
function symbols. The Σ-term algebra will also be denoted by T (Σ).

Consider the following set of formulas.∨
f∈Σ

∃y. x ≈ f(y) (A1)

f(x) 6≈ g(y) (A2)

for every f, g ∈ Σ such that f 6= g;

f(x) ≈ f(y) =⇒ x ≈ y (A3)

for every f ∈ Σ of arity ≥ 1;

t 6≈ x (A4)

for every non-variable term t in which x appears.
Some of these formulas contain free variables, we assume that they

are implicitly universally quantified.
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Axiom (A1), sometimes called the domain closure axiom, asserts that
every element in Σ is obtained by applying a term constructor to other
elements.

Axiom (A3) describes the injectivity of term constructors, while axiom
(A2) expresses the fact that terms constructed from different constructors
are distinct. Throughout this paper, we refer to (A2) as the distinctness
axiom and to (A3) as the injectivity axiom.

The axiom schema (A4), called the acyclicity axiom, asserts that no
term is equal to its proper subterm, or in other words that there exist no
cyclic terms.

In the following sections we will also discuss theories in which there
are non-constructor function symbols. Note that when we deal with such
theories, the acyclicity axioms are used only when all symbols in t are
constructors.

4.3.2 Known Results

We denote by TFT the theory axiomatized by (A1)–(A4), that is, the
set of logical consequences of all formulas in (A1)–(A4). Note that the
Σ-term algebra is a model of all formulas (A1)–(A4), and therefore also
a model of TFT .

Theorem 2. The following results hold.

1. TFT is complete. That is, for every sentence F in the language of
T (Σ), either F ∈ TFT or (¬F ) ∈ TFT .

2. TFT is decidable.

3. If Σ contains at least one symbol of arity > 1, then the first-order
theory of TFT is non-elementary.

Completeness of TFT is proved in a number of papers - a detailed
proof can be found in, e.g., [122].

Decidability of TFT in Theorem 2 is implied by the completeness of
TFT and by the fact that TFT has a recursive axiomatization. More
precisely, completeness gives the following (slightly unusual) decision pro-
cedure: given a sentence F , run any complete first-order theorem proving
procedure (e.g., a complete superposition theorem prover) simultaneously
and separately on F and ¬F . We can get around the problem that the
axiomatisation is infinite but throwing in axioms, one after one, while
running the proof search — indeed, by the compactness property of first-
order logic, if a formula G is implied by an infinite set of formulas, it is
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also implied by a finite subset of this set. One of contributions of this
paper is showing how to avoid dealing with infinite axiomatizations.

Further, the non-elementary property of TFT in Theorem 2 follows
from a result in [55]: every theory in which one can express a pairing
function has a hereditarily non-elementary first-order theory.

Note that the completeness of TFT implies that TFT is exactly the set
of all formulas true in the Σ-term algebra. First-order theories of term
algebras are closely related to non-recursive logic programs, for related
complexity results, also including the case with only unary functions,
see [133].

Let us make the following important observation. The decidability
and other results of Theorem 2 do not hold when uninterpreted functions
or predicates are added to TFT . If we add to the Σ-term algebra un-
interpreted symbols, one can for example use these symbols to provide
recursive definitions of addition and multiplication, thus encoding first-
order Peano arithmetic. Using the same reasoning as in [77] one can then
prove the following result.

Theorem 3. The first-order theory of Σ-algebras with uninterpreted sym-
bols is Π1

1-complete, when Σ contains at least one non-constant.

We will not give a full proof of Theorem 3 but refer to [77] for details.
Here, we only show how to encode non-linear arithmetic in TFT using
Σ-term algebra uninterpreted symbol, which is relatively straightforward.
Assume, without loss of generality, that Σ contains a constant 0 and a
unary function symbol s (successor). Then all ground terms, and hence
all term algebra elements are of the form sn(0), where n ≥ 0. We will
identify any such term sn(0) with the non-negative integer n.

Add two uninterpreted functions + and · and consider the set A of
formulas defined as follows:

∀x. x+ 0 = x

∀x. s(x) + y = s(x+ y)

∀x. x · 0 = 0

∀xy. s(x) · y = (x · y) + y

It is not hard to argue that in any extension of the Σ-algebra satisfying
A, the functions + and · are interpreted as the addition and multiplication
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on non-negative integers. Let now G be any sentence using only +, ·, s, 0.
Then we have that A =⇒ G is valid in the Σ-algebra if and only if G is
a true formula of arithmetic.

Note that Theorem 3 refers to the theory of algebras, i.e., the set of
formulas valid on Σ-algebra. In view of this theorem, with uninterpreted
symbols of arity ≥ 1 in the signature, this includes more formulas than
the set of formulas derivable from (A1)–(A4).

4.3.3 Other Formalizations

Instead of using existential quantifiers in (A1), one can also use axioms
based on destructors (or projection functions) of the algebra. For all
function symbols f of arity n > 0 and all i = 1, . . . , n, introduce a
function pif . The destructor axioms using these functions are:

x ≈ f(p1
f (x), . . . , pnf (x)). (A1’)

The axiom (A3) can be replaced by the following axioms, which can
be considered as a definition of destructors:

pif (f(x1, . . . , xi, . . . , xn)) ≈ xi (A3’)

Given the other axioms, (A3) and (A3’) are logically equivalent, but some
authors prefer the presentation based on destructors. Note, however, that
the behavior of a destructors pif is unspecified on some terms.

4.3.4 Extension to Many-Sorted Logic

In practice, it can be useful to consider multiple sorts, especially for
problems taken from functional programming. In this setting, each term
algebra constructor has a type τ1 × · · · × τn → τ . The requirement that
there is at least one constant should then be replaced by the requirement
that for every sort, there exists a ground term of this sort.

We can also consider similar theories, which mix constructor and non-
constructor sorts. That is, some sorts contain constructors and some do
not.

Consider an example with the following term algebra signature:

ΣBin = {leaf : τ → Bin,node : Bin × τ × Bin → Bin}

This signature defines an algebra of binary trees, where every node and
leaf is decorated by an element of a (non-constructor) sort τ . In this case
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∃y. x ≈ leaf (y) ∨ ∃y1 y2 y3. x ≈ node(y1, y2, y3)

node(x1, x2, x3) 6≈ leaf (y1)

leaf (x) ≈ leaf (y) =⇒ x ≈ y

node(x1, x2, x3) ≈ node(y1, y2, y3) =⇒ x1 ≈ y1 ∧ x2 ≈ y2 ∧ x3 ≈ y3

x 6≈ node(x, y1, y2)

x 6≈ node(y1, y2, x)

x 6≈ node(node(x, y1, y2), y3, y4)

. . .

Figure 4.1. The instantiation of the theory axioms for the signature ΣBin .

term algebra axioms are only using sorts with constructors. The axioms
of this theory of trees, as defined previously, are shown in Figure 4.1.

4.4 A Conservative Extension of the Theory
of Term Algebras

In this paper we aim to prove theorems in first-order theories containing
constructor-defined types. While in general the theory is Π1

1-complete,
we still want to have a method that behaves well in practice. Our method
will be based on extending the superposition calculus by axioms and/or
rules for dealing with term algebra constructor symbols.

One of the criteria of behaving well in practice is to have a method that
is complete for pure term algebra formulas, that is, without uninterpreted
functions. The immediate idea would be to use the axiomatization of
term algebras consisting of (A1)–(A4), however this does not work since
there is an infinite number of acyclicity axioms.

In this section we show how to overcome this problem by using an
extension of term algebras by a binary relation Sub, denoting the proper
subterm relation. Let us further denote by T +

FT the set of formulas
which contains (A1)–(A3), but replaces the acyclicity axiom (A4) by the
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following axioms (B1)–(B3):

Sub(xi, f(x1, . . . , xi, . . . , xn)), (B1)

for every f ∈ Σ of arity n ≥ 1 and every i such that n ≥ i ≥ 1.

Sub(x, y) ∧ Sub(y, z) =⇒ Sub(x, z) (B2)

¬Sub(x, x) (B3)

Intuitively, the predicate Sub(s, t) holds iff s is a proper subterm of
t. Axiom (B1) ensures that this relation holds for terms s appearing
directly under a term algebra constructor in t , while (B2) describes the
transitivity of the subterm relation and ensures that the relation also
holds if s is more deeply nested in t. Axiom (B3) asserts that no term
may be equal to its own proper subterm.

We now observe the following properties of (B1)–(B3).

Theorem 4. T +
FT is a conservative extension of TFT , that is:

1. Every theorem in TFT is a theorem in T +
FT ;

2. Every theorem in T +
FT that uses only symbols from the language of

TFT (i.e., not using the predicate Sub) is also a theorem of TFT .

Proof. For (1), it is enough to prove that every instance of the acyclicity
axiom (A4) of TFT is implied by axioms of T +

FT . To this end, note that
for every term t and its proper subterm s, (B1)–(B2) imply Sub(s, t), so
every instance of the acyclicity axiom (A4) is implied by (B1)–(B3).

To prove part (2), first note that T +
FT is consistent (sound). This

follows from the fact that it has a model, which extends the Σ-term
algebra by interpreting Sub as the subterm relation. Now assume, by
contradiction, that there is a sentence F not using Sub such that F ∈ T +

FT

and F 6∈ TFT . By the completeness result of Theorem 2, we then have
¬F ∈ TFT , which by part (1) implies ¬F ∈ T +

FT . We have both F ∈ T +
FT

and ¬F ∈ T +
FT , which contradicts the consistency of T +

FT .

Note that the full first-order theory of term algebras with the subterm
predicate is undecidable [132].

The important difference between TFT and T +
FT is that T +

FT is finitely
axiomatizable. This fact and Theorem 4 can be directly used to design
superposition-based proof procedures for TFT , as follows. Given a term
algebra sentence F , we can search for a superposition proof of F from the
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axioms of T +
FT . Such a proof exists if and only if F holds in the Σ-term

algebra. This proof procedure can even be turned into a superposition-
based decision procedure for TFT , which is based on attempting to prove
F and ¬F in parallel, until one of them is proved, which is guaranteed
by the completeness of TFT from Theorem 2.

It is interesting that, while proving a formula F with quantifier al-
ternations in this way, first-order theorem provers will first skolemize F ,
introducing uninterpreted functions. While the first-order theory of term
algebras with arbitrary uninterpreted functions is incomplete, our results
guarantee completeness on formulas with uninterpreted functions obtained
by skolemization. This is so because skolemization preserves validity and
hence, using Theorem 4, we conclude completeness on skolemized formulas
with uninterpreted functions.

While it is hard to expect that proving term algebra formulas by su-
perposition will result in a better decision procedure compared to those
described in the literature, see e.g. [38], our approach has the advantage
that it can be combined with other theories and can be used for prov-
ing formulas in undecidable fragments of the full first-order theory of
term algebras. Given a formula containing both constructors, uninter-
preted symbols and possible theory symbols, we can attempt to prove
this formula by adding the axioms of T +

FT and then use a superposition
theorem prover. The results of this section show that this method is
strong enough to prove all (pure) term algebra theorems. Our experimen-
tal results described in Section 3.6 give an evidence that it is also efficient
in practice.

The conservative extension T +
FT presented above thus allows one to

encode problems in the theory of term algebras and reason about them
using any tool for automated reasoning in first-order logic. However the
transitive nature of the predicate Sub can impact the performance of
provers negatively. Note that the transitivity axiom can also be replaced
by axioms of the form:

Sub(x, xi) =⇒ Sub(x, f(x1, . . . , xi, . . . , xn)).

Using these new axioms will result in fewer inferences during proof search
and a slower growth of the subterm relation, which are important param-
eters for the provers’ performance.
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4.5 An Extended Calculus

In this section we describe an alternative way to use superposition theo-
rem provers to reason about term algebras. Instead of including theory
axioms in the initial set of clauses, we extend the calculus with inferences
rules. This is similar to the way paramodulation is used to replace the
axiomatization of equality, apart from the fact that we cannot obtain a
calculus that is complete.

4.5.1 A Naive Calculus

In this section we will consider alternatives and improvements to axiom-
atizing term algebras. The idea is to add simplification rules specific to
term algebras and replace the troublesome acyclicity axiom by special
purpose inference rules.

The superposition calculus uses term and clause orderings to orient
equalities, restrict the number of possible inferences, and simplification.
The general rule is that a clause in the search space can be deleted if it
is implied by strictly smaller clauses in the search space.

One obvious idea is to add several simplification rules, corresponding
to applications of resolution and/or superposition to term algebra axioms.
For example, a clause f(s) ≈ s ∨ C can be replaced by a simpler, yet
equivalent, clause C. Likewise, the clause f(s) ≈ f(t) ∨ C is equivalent,
by injectivity of the constructors, to the clause s ≈ t ∨ C. The clause
s ≈ t∨C is also smaller than f(s) ≈ f(t)∨C, so it can replace this clause.

Let us start with examples showing that replacing axioms by rules
can result in incompleteness even in very simple cases.

Take for example two ground unit clauses f(a) ≈ b and g(a) ≈ b,
where all symbols apart from b are constructors. This set of clauses is
unsatisfiable in the theory of term algebras. However, if we replace the
axiom f(x) 6≈ g(y) by a simplification rule, there are no inferences that
can be done between these clauses (assuming we are using the standard
Knuth-Bendix ordering).

Another example showing that the acyclicity axiom can be hard to
drop or replace is the set of two ground unit clauses f(a) ≈ b and f(b) ≈ a,
where f is a constructor. This set of clauses is also unsatisfiable in the
theory of term algebras, since it implies f(f(b)) = b. Similar to the
previous example, there is no superposition inference between these two
clauses.
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4.5.2 The Distinctness Rule

We implemented an extra simplification and a deletion rule. Such rules
will be denoted using a double line, meaning that the clauses in the
premise are replaced by the clauses in the conclusion.

The simplification rule is

f(s) ≈ g(t) ∨ C
Dist+C

where f and g are different constructors. Essentially, it removes from the
clause a literal false in the theory of term algebras.

The deletion rule is

f(s) 6≈ g(t) ∨ C
Dist−∅

where f and g are different constructors. It deletes a theory tautology.

4.5.3 The Injectivity Rule

There is a simplification rule based on the injectivity axiom (A3). Suppose
that f is a constructor of arity n > 0. Then we can use the simplification
rule

f(s1 . . . sn) ≈ f(t1, . . . , tn) ∨ C
Inj+

s1 ≈ t1 ∨ C
· · ·

sn ≈ tn ∨ C

One can also note that under some additional restrictions the following
inference

f(s1 . . . sn) 6≈ f(t1, . . . , tn) ∨ C
NInj

s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn ∨ C

can be considered as a simplification rule too. The restriction is the clause
ordering condition {s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn} ≺ C.

Note that in both rules the premise is logically equivalent to the
conjunction of the formulas in the conclusion in the theory of term algebras
and all formulas in the conclusion are smaller than the formula in the
premise (subject to the ordering condition for the second rule).
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4.5.4 The Acyclicity Rule

Similar to the distinctness axiom and rules, we can introduce a simplifica-
tion and a deletion rule based on the acyclicity axiom. First, we introduce
a notion of a constructor subterm as the smallest transitive relation that
each of the terms ti is a constructor subterm of f(t1, . . . , tn), where f is
a constructor and n ≥ i ≥ 1. For example, if f is a binary constructor,
and g is not a constructor, then all constructor subterms of the term
f(f(x, a), g(y)) are f(x, a), x, a and g(y). Its subterm y is not a construc-
tor subterm. One can easily show that any inequality s 6≈ t, where s is a
constructor subterm of t is false in any extension of term algebras.

The simplification rule for acyclicity is

s ≈ t ∨ C
Acycl+C

where s is a constructor subterm of t. It deletes from a clause its literal
false in all term algebras.

The deletion rule is

s 6≈ t ∨ C
Acycl−

∅

where s is a constructor subterm of t. It deletes a theory tautology.
Further, if we wish to get rid of the subterm relation Sub, we can

use various rules to treat special cases of acyclicity. If we do this, we
will lose completeness even for pure term algebra formulas, but such
a replacement can deal with some formulas more efficiently, while still
covering a sufficiently large set of problems.

One example of such a special acyclicity rule is the following:

t ≈ u ∨ C Acycl’
s 6≈ u ∨ C

where s is a constructor subterm of t. Note that this rule is not a
simplification rule, so we do not delete the premise after applying this
rule.

4.6 Experimental Results

4.6.1 Implementation

We implemented the subterm relation of Section 4.4 and simplification
rules of Section 4.5 in the first-order theorem prover Vampire [84]. Note
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that Vampire behaves well on theory problems with quantifiers both at
the SMT and first-order theorem proving competitions, winning respec-
tively 5 divisions in the SMT-COMP 2016 competition of SMT solvers1

and the quantified theory division of the CASC 2016 competition of first-
order provers 2. With our implementation, Vampire becomes the first
superposition theorem prover able to prove properties of term algebras.
Moreover, our experiments described later show that Vampire outper-
forms state-of-the-art SMT solvers, such as CVC4 and Z3, on existing
benchmarks.

Our implementation required altogether about 2,500 lines of C++
code. The new version of Vampire, together with our benchmark suite,
is available for download3.

4.6.2 Input Syntax and Tool Usage

In our work, we used an extended SMTLIB syntax [10] to describe term
constructors. Although not yet part of the official SMTLIB standard, this
syntax is already supported by the SMT solvers Z3 and CVC4, and its
standardization is under consideration.

Our input syntax uses declare-datatypes for declaring an ab-
stract data type corresponding to a term algebra sort. This declaration
simultaneously adds the term algebra symbols and the Sub predicate to
the problem signature, adds the distinctness, injectivity, domain closure
and subterm axioms to the input set of formulas, and activates the addi-
tional inferences rules from Section 4.5. Alternatively, the user can choose
not to activate the inference rules in our implementation. The inclusion
of the Sub predicate and its axioms, as presented in Section 4.4, can also
be deactivated.

Note that the SMTLIB syntax also provides the not yet standardized
command declare-codatatypes to declare types of potentially cyclic
or infinite data structures. The theory underlying the semantics of such
types is almost identical to that of finite term algebras, except that
the acyclicity axiom is replaced by a uniqueness rule that asserts that
observationally equal terms are indeed equal [113]. Therefore our calculus
minus the acyclicity axioms/rules is an incomplete but sound inference
system for that theory, and users can declare co-algebraic data types
in their problems as well. Like acyclicity, the uniqueness principle of
co-algebras is not finitely axiomatizable.

1http://smtcomp.sourceforge.net/2016/
2http://www.cs.miami.edu/~tptp/CASC/J8/
3http://www.cse.chalmers.se/~simrob/tools.html
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4.6.3 Benchmarks

We evaluated our implementation on two sets of problems. These prob-
lems included all publicly available benchmarks, as mentioned below.

• A (parametrized) game theory problem originally described in [38].
This problem relies on the term algebra of natural numbers to describe
winning and losing positions of a game. It is possible to encode, for a
given positive integer k, a predicate winningk over positions, such that
winningk(p) holds iff there exists a winning strategy from the position
p in k or fewer moves. The satisfiability of the resulting first-order
formula can be checked by term algebra decision procedures, since
it does not use symbols other than those of the term algebra, but it
includes 2k alternating universal and existential quantifiers. This heavy
use of quantifiers makes it an interesting and challenging problem for
provers. An example of this problem encoded in the SMTLIB syntax
is given in Figure 4.2.

• Problems about functional programs, generated by the Isabelle in-
teractive theorem prover [100] and translated by the Sledgehammer
system [24]. The resulting SMTLIB problems include algebraic and
co-algebraic data types as well as arbitrary types and function sym-
bols, and also some quantified formulas. Some of these problems are
taken from the Isabelle distribution (Distro) and the Archive of Formal
Proofs (AFP), others from a theory about Bird and Stern–Brocot trees
by Peter Gammie and Andreas Lochbihler (G&L). They are represen-
tative of the kind of problems corresponding to program analysis and
verification goals. This set of problems originally appeared in [113] and,
to the best of our knowledge, represent the set of all publicly available
benchmarks on algebraic data types.

4.6.4 Evaluation

Our experiments were carried out on a cluster on which each node is
equipped with two quad core Intel processors running at 2.4 GHz and
24GiB of memory. To compare our work to other state-of-the-art systems,
we include the results of running the SMT solvers Z3 and CVC4 on the
Isabelle problems, as previously reported in [113], and also add the results
of running these two solvers on the game theory problem.
Game theory problems. The times required to solve the game theory
problem for different values of the parameter k are shown in Table 4.1.
The first column indicates the time required by Vampire using the theory
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(declare-datatypes ()
((Nat (z) (s (pred Nat)))))

(assert
(not

(exists
((w1 Nat))
(and

(or
(= (s z) (s w1))
(= (s z) (s (s w1)))

)
(forall

((l0 Nat))
(=>

(or
(= w1 (s l0))
(= w1 (s (s l0)))

)
false))))))

(check-sat)

Figure 4.2. An instance of the game theory problem from [38], encoded
in SMTLIB syntax. The first command declares a term algebra with
a constant z and a unary function s; note that the projection function
pred must also be named. The assertion (starting with assert) is a
formula corresponding to the negation of the predicate winning1(s(z)).

axioms (A) described in Section 4.4, and the second and third columns
give the time needed when the simplification rules (R) are also activated
in Vampire (Section 4.5). For this particular problem, the acyclicity rule
plays no role in the proof, but in order to assess its impact on performance,
the third column shows the times needed to solve the problem when the
subterm relation axioms (S) are also included in the input. The fourth
and fifth columns of Table 4.1 respectively indicate the times needed by
CVC4 and Z3 for solving the corresponding problem. Where no value is
given, the prover was unable to solve the problem. Despite belonging to a
decidable class, this problem is quite challenging for theorem provers and
SMT solvers, which is easily explained by the presence of a formula with
many quantifier alternations. The SMT solvers CVC4 and Z3 are able to
disprove the negated conjecture only for k = 1 or k = 2. SMT solvers can
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k
Vampire

(A)
Vampire
(A+R)

Vampire
(A+R+S) CVC4 Z3

1 0.01 0.01 0.01 0.01 0.01
2 0.01 0.01 0.01 0.01 0.01
3 4.98 0.18 0.66 – –
4 2.21 0.32 0.63 – –
5 35.16 11.17 15.40 – –
6 31.57 8.19 11.33 – –
7 – – – – –

Table 4.1. Time required to prove unsatisfiability of different instances of
the game theory problem from [38].

also consider the (non-negated) conjecture and try to satisfy it, but this
does not produce better results. In comparison, our implementation in
Vampire can solve the problem for k = 6, that is, for formulas with 12
alternated existential and universal quantifiers, in 8.19 seconds. In [38],
the authors are able to solve the problem for k as high as 80, using an
implementation of the decision procedure presented in [130]. However
such a decision procedure would not be able to reason in the presence of
uninterpreted symbols, and therefore its usage is much more restricted.
The results of Table 4.1 confirm that first-order provers can be better
suited than SMT solvers for reasoning about formulas with many quanti-
fiers, despite the various strategies used for quantifier reasoning in SMT
solvers (for example, by using E-matching [49]). Table 4.1 also shows
that adding simplification rules as described in Section 4.5 improves the
behavior of the theorem prover.

Isabelle problems about functional programs. Our results on eval-
uating Vampire on the Isabelle problems are shown in Table 4.2. The
problems were translated by Sledgehammer by selecting some lemmas
possibly relevant to a given proof goal in Isabelle and translating them
to SMTLIB along with the negation of the goal. While the intent of this
translation is to produce unsatisfiable first-order problems, this is not the
case for all of the problems tested here. A few problems are satisfiable
and it is likely that many are unprovable, for example because the lemmas
selected by Sledgehammer are not sufficiently strong to prove the goal.
The set of problems originally included 4170 problems, of which 2869
include at least one algebraic data type and 2825 include at least one
co-algebraic data type, some problems containing both. In the presence
of co-algebraic data types, CVC4 has a special decision procedure which
replaces the acyclicity rule by a uniqueness rule. In our implementation,
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Prover Solved Unique
Z3 1665 5

CVC4 1711 12
Vampire (Best strategy) 1720 31

Table 4.2. Number of problems solved among the 6282 Isabelle problems
translated by SledgeHammer.

Vampire simply does not add the acyclicity axiom, but the remaining
axioms are added as they hold for co-algebraic data types as well. Unlike
CVC4, Z3 does not support reasoning about co-algebraic data types.

In order to test the efficiency of our acyclicity techniques on more
examples, we considered problems containing co-algebraic data types: by
replacing them with algebraic data types with similar constructors, we
obtained different problems where the acyclicity principle applies. Note
that not all co-algebraic data type definitions correspond to a well-founded
definition for an algebraic data type: after leaving these out, we obtained
2112 new problems.

Table 4.2 summarizes our results on this set of benchmarks, using
a single best strategy in Vampire. For each solver, we also show the
number of problems solved uniquely only by that solver.

We also ran Vampire with a combination of strategies with a total
time limit of 120 seconds. Table 4.3 shows the total number of solved
problems, with details on whether the problems contain only algebraic
data types, co-algebraic data types, or both. Overall, Vampire is able to
solve 1785 problems, that is 4,2% more that CVC4 and 7,3% more than Z3,
which is a significant improvement. 50 problems are uniquely solved by
Vampire, as listed in column six Table 4.3. When compared to Vampire,
only 4 problems were proved by CVC4 alone, while Z3 cannot prove any
problem that was not proved by Vampire – see columns seven and eight
of Table 4.3. Summarizing, Table 4.2 shows that Vampire outperforms
the best existing solvers so far. The experimental results of Tables 4.1-4.2
provide an evidence that our methods for proving properties of algebraic
data types outperform methods currently used by SMT solvers.

4.6.5 Comparison of Option Values

We were also interested in comparing how various proof option values
affect the performance of a theorem prover. For the purpose of this
research, the options that we considered are:

1. the Boolean value selecting whether term algebra rules are used;
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Total Solved Unique
Vampire CVC4 Z3 Vampire CVC4 Z3

Data types 3457 999 956 947 23 0 0
Co-data types 1301 430 415 382 16 2 0

Both 1524 356 341 334 11 2 0
Union 6282 1785 1712 1663 50 4 0

Table 4.3. Distribution of solved problems according to the data types
they feature

2. the value selecting how acyclicity is treated (axioms, rules, or none,
that is, no acyclicity axioms or rules).

Making such a comparison is hard, since there is no obvious method-
ology for doing so, especially considering that Vampire has 64 options
commonly used in experiments. The majority of these options are Boolean,
some are finitely-valued, some integer-valued and some range over other
infinite domains. The method we used was based on the following ideas.
Suppose we want to compare values for an option π. Then:

1. we use a set of problems obtained by discarding problems that are
too easy or currently unsolvable;

2. we repeatedly select a random problem P in this set, a random
strategy S and run P on variants of S obtained by choosing all
possible values for π using the same time limit.

We discovered that the results for the term algebra rules are inconclusive
(turning them on or off makes little effect on the results) and will present
the results for the acyclicity option.

Our selected set of problems consisted of 262 term algebra problems.
We made 90,000 runs for each value (off, theory axioms, and the acyclicity
rules), that is, 270,000 tests all together, with the time limit of 30 seconds.
While interpreting the results, it is worth mentioning the following.

1. When neither acyclicity rules nor acyclicity axioms are used, prob-
lems that require acyclicity reasoning become unsolvable. On the
other hand, for other problems, this setting results in a smaller
search space.

2. When the acyclicity rules are used, the resulting calculus is incom-
plete even for pure term algebra problems, but the subterm relation
is not used, which generally means that fewer clauses should be
generated.
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off axioms rules
Total solved 2030 9086 9602
Solved by only this value 50 70 566

Table 4.4. Comparison of proof option values for acyclicity in Vampire.

The results of these experiments are shown in Table 4.4. We show
the total number of successful runs (out of 90,000) and the number of
runs where only one value for this option solved the problem. Probably
the most interesting observation is that using acyclicity simplification
rules (Section 4.5) instead of theory axioms (Section 4.4) results in many
more problems solved. This gives us an evidence that the axiomatization
based on the subterm relation results in much larger search spaces. This
also means that the value resulting in an incomplete strategy in this case
generally behaves better.

One should also note the 50 problems solved only when turning acyclic-
ity off. This means that even the light-weight rule-based treatment of
acyclicity sometimes results in a large overhead. Moreover, out of these
50 problems 10 were solved in less than 1 second.

4.7 Related Work

The problem of reasoning over term algebras first appears in the re-
stricted form of syntactic unification, mentioned in [66]. The algorithm
for syntactic unification was later described in [120], and later refined into
quasi-linear [13,70,97] and linear algorithms [103].

The full-first order theory of term algebras over a finite signature
was first studied in [96], where its decidability was proved by quantifier
elimination. Other quantifier elimination procedures appeared in [40,
69, 95, 122]. [55] proved a result implying that the first-order theory of
term algebras is non-elementary. There is a large body of research on
decidability of various extensions of term algebras, which we do not
describe here.

In this paper we do not prove decidability of new theories. However,
we present a new superposition-based decision procedure for first-order
theories of term algebras using a finitely axiomatizable theory.

Probably the first implementation of a decision procedure for term
algebras is described in [38]. The theory of finite or infinite trees is also
studied in [130] and a practical decision procedure is given based on
rewriting.
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Due to recent applications of program analysis, there is now a growing
interest in the automated reasoning community for practical implemen-
tation of term algebras and their combinations with other theories. A
decision procedure for algebraic data types is given in [12] and later ex-
tended to a decision procedure for co-algebraic data types in [113]. These
decision procedures exploit SMT-style reasoning and are supported by
CVC4. Z3 also supports proving properties about algebraic data types [22].
Unlike these techniques, our work targets the full first-order theory of
term algebras, with arbitrary use of quantifiers. Our proof search pro-
cedure is based on the superposition calculus and allows one to prove
properties with both theories and quantifiers.

4.8 Conclusion

We presented two different ways to reason in the presence of the theory of
finite term algebras with a superposition-based first-order theorem prover.
Our first approach is based on a finitely axiomatizable conservative ex-
tension of the theory and can be implemented in any first-order theorem
prover. The second technique extends the first with the addition of extra
inference and simplification rules having two aims:

1. simplifying more clauses;

2. replacing expensive subterm-based reasoning about acyclicity by
light-weight inference rules (though incomplete even without unin-
terpreted functions).

While not as efficient as specialized decision procedures for this theory,
both our techniques allow us to reason about problems that includes the
theory of finite terms algebras and other predicate or function symbols.
We evaluated our work on game theory constraints and properties of
functional program manipulating algebraic data types.

The next natural development would be to extend our approach to the
theories of rational (finite but possibly cyclic) and infinite term algebras.
The notion of co-algebras is also closely related to possibly infinite terms,
with the addition of a uniqueness principle for cyclic terms. A decision
procedure for this theory was included in the SMT solver CVC4 to decide
problems involving co-algebraic data types [113]. Co-algebras are also
best suited to express the semantics of processes and structures involving
a notion of state. Unlike term algebras, co-algebras have been studied
almost exclusively from the point of view of category theory, rather than
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that of first-order logic, so that many theoretical and practical applications
remain to be explored there.

An even more interesting avenue to exploit is inductive reasoning
about algebraic data types in first-order theorem proving, also based on
extensions of the superposition calculus.

The work presented here should be a useful development for the ver-
ification of functional programs. For example it would benefit the tool
HALO [135], which expresses the denotational semantics of Haskell pro-
grams in first-order logic, before using automated theorem provers to
verify some of their properties. Our work not only makes the transla-
tion easier but also modifies the prover to make it more efficient on the
generated problems. This also applies to other tools that already use
first-order theorem provers to discharge their proof obligations, such as
inductive theorem provers, e.g. HipSpec [33] and automated reasoning
tools for higher-order logic, e.g. Sledgehammer [24].

More generally, our work makes an important step towards closing the
gap between SMT solvers and first-order theorem provers. The former
are traditionally used for problems involving theories, while the latter are
better at dealing with quantifiers. Problems that include both quantifiers
and theories are very common in practical applications and represent a big
challenge due to their intrinsic complexity, both in theory and in practice.
Our results show that first-order theorem provers can perform efficient
reasoning in the presence of theories, solving many problems previously
unsolvable by other tools.
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Chapter 5

An Inference Rule for the
Acyclicity Property of Term Algebras

Simon Robillard

Abstract. Term algebras are important structures in many areas of
mathematics and computer science. Reasoning about their theories in
superposition-based first-order theorem provers is made difficult by the
acyclicity property of terms, which is not finitely axiomatizable. We
present an inference rule that extends the superposition calculus and
allows reasoning about term algebras without axioms to describe the
acyclicity property. We detail an indexing technique to efficiently apply
this rule in problems containing a large number of clauses. Finally we
experimentally evaluate an implementation of this extended calculus in
the first-order theorem prover Vampire. The results show that this
technique is able to find proofs for difficult problems that existing SMT
solvers and first-order theorem provers are unable to solve.

Originally published in Proceedings of the 4th Vampire Workshop, volume
53, pages 20-32. EasyChair, 2018.
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5.1 Introduction

Term algebras are central to many areas of mathematics and computer
science. In logic, they are closely related to the concept of Herbrand
structures, and in other areas of mathematics, they can be used to for-
malize inductively defined structures. They are also useful in the study
of programming languages, particularly those that manipulate inductive
data types. The ability to reason about term algebras efficiently in an
automatic prover is therefore of great importance.

The main difficulty in reasoning about their theory is caused by the
acyclicity property of terms, which states that a term cannot be equal
to one of its own subterms. This property cannot be described by a
finite number of axioms in first-order logic, making it troublesome for
first-order theorem provers based on superposition. Such provers find
refutation proofs by saturating a set of clauses, and theory reasoning
is accomplished by explicitly adding the theory axioms to the set of
clauses to be saturated. Term algebra reasoning has therefore often been
carried out by using dedicated decision procedures [122, 128, 130] which
typically cannot be used on problems containing other theories. More
recently, support for term algebra reasoning has been added to some SMT
solvers [12, 114], but these are usually not as efficient as superposition-
based provers on problems that contain heavily quantified formulas.

We previously tackled the problem of reasoning about term algebras
in a superposition prover [81] (Chapter 4 of this thesis) by introducing a
conservative extension of their theories, in which an additional predicate
symbol is used to represent the subterm relation over terms. The predicate
is defined by additional axioms; in particular it has the property of being
irreflexive, which corresponds to the restriction that terms cannot be
equal to their own subterms. This technique provides an easy way to
perform complete reasoning in the theory of term algebras using any first-
order theorem prover. However the subterm relation is transitive, which
means that provers may generate a large number of clauses containing
the subterm predicate, most of which will not be used in the proof.

In this paper we present an alternative solution to reason about the
acyclicity property of term algebras. Instead of relying on axioms, we ex-
tend the superposition calculus with a new inference rule. The inferences
that result from it are sound in all interpretations that satisfy the acyclic-
ity property. This enables the prover to generate useful new consequences
while minimizing the number of generated clauses, thus improving the
efficiency of the proof search.
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This paper is organized as follows. We define term algebras and their
first-order theory in Section 5.2 and recall some notions about superpo-
sition in Section 5.3. In Section 5.4, we describe the new inference rule.
Technical details allowing the rule to be efficiently implemented in a first-
order theorem prover are given in Section 5.5. Lastly in Section 6.7, we
evaluate this approach, as implemented in the first order-theorem prover
Vampire, and compare it to other tools and techniques.

5.2 Term Algebras

In this section, we define term algebras and their first-order theories, and
describe some of their properties. The context of this presentation is
unsorted first-order logic, but the results can be extended to a many-
sorted logic in a straightforward manner. Equality is part of the logic,
the notation ≈ stands for the equality predicate in first-order logic, and
6≈ for its negation.

5.2.1 First-Order Theory

Let Σ be a finite collection of function symbols containing at least one
constant. We call these symbols term constructors and denote them
by the letters e, f, g, . . .We denote by T (Σ) the set of ground terms
constructed from Σ.

The Σ-term algebra is the algebraic structure whose carrier set is T (Σ)

and in which terms are interpreted as themselves: every constant symbol
e is interpreted as the corresponding constant in T (Σ), and every n-ary
function symbol f is interpreted as the function from T (Σ)n to T (Σ) that
maps the tuple (t1, . . . , tn) to the element f(t1, . . . , tn).

Definition 8. We now define the first-order theory TFT as the set of
formulas that are consequences of the following axioms:

∀x

(∨
f∈Σ

∃y. x ≈ f(y)

)
(A1)

∀xy. f(x) 6≈ g(y) (A2)

for every f, g ∈ Σ such that f 6= g;

∀xy (f(x) ≈ f(y) =⇒ x ≈ y) (A3)

for every f ∈ Σ of arity ≥ 1;
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∀x. x 6≈ t[x] (A4)

for every term t[x] 6= x in which x appears.

Axiom (A1), sometimes called the domain closure axiom, asserts that
every element in Σ is obtained by applying a term constructor to other
elements. Axiom (A2) ensures that terms constructed from different
constructors are distinct, while axiom (A3) describes the injectivity of
term constructors. (A4) is an axiom schema: the resulting formulas
assert that no term can be equal to one of its own subterms, i.e., terms
are acyclic. The Σ-term algebra is a model of every formula in (A1)–(A4),
and therefore of every formula in TFT .

We say that a formula is a pure term algebra formula if its language
only contains function symbols from Σ and the equality predicate symbol.
Consider for example a term algebra signature consisting of a constant z
and a unary symbol s. The sentence

∀xy (f(x, z) ≈ x ∧ f(x, s(y)) ≈ s(f(x, y))) =⇒ ∀xy. f(x, y) ≈ f(y, x)

(S)
is not a pure term algebra formula because it contains the function symbol
f , which is not part of the set of term constructors Σ.

The theory TFT is complete on pure term algebra formulas [95]: for
any such formula ϕ, either ϕ ∈ TFT or ¬ϕ ∈ TFT .

5.2.2 Acyclicity and Induction

The acyclicity property is closely related to the notion of induction. In
order to illustrate this, we consider a theory TFT Ind , in which the acyclicity
axiom schema (A4) is replaced by an induction axiom schema.

Definition 9. TFT Ind is the set of formulas that are consequences of
the axioms (A1)–(A3) and of the formulas that instantiate the following
axiom schema:∧
f∈Σ

(
∀x̄
(
ϕ(x1)∧· · ·∧ϕ(xn) =⇒ ϕ(f(x1, . . . , xn))

))
=⇒ ∀x. ϕ(x) (A5)

for every sentence ϕ(x) in the language in which x is the only free variable.

Lemma 7 (Properties of TFT Ind). The following properties hold:

1. TFT Ind is consistent;

2. for every formula ψ, if ψ ∈ TFT , then ψ ∈ TFT Ind ;
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3. for every pure term algebra formula ψ, either ψ ∈ TFT Ind or ¬ψ ∈
TFT Ind ;

4. for every pure term algebra formula ψ, ψ ∈ TFT Ind if and only if
ψ ∈ TFT .

Proof. (1) holds because T (Σ) is a model of TFT Ind . (2) holds because
every formula of the axiom schema (A4) is a consequence of the axioms
of TFT Ind (the acyclicity axioms can be proven by induction). (3) is a
consequence of the completeness of TFT and of (2). Finally for (4), one
direction of the equivalence if is given by (2). For the other direction, we
must show that ψ ∈ TFT Ind implies ψ ∈ TFT . By contradiction, assume
ψ ∈ TFT Ind and ψ 6∈ TFT . Then by completeness of TFT , we have that
¬ψ ∈ TFT , and by (2) it follows that ¬ψ ∈ TFT Ind , which contradicts the
consistency of TFT Ind .

Naturally, if we consider languages that include arbitrary predicate
and function symbols, TFT is a strict subset of TFT Ind . Consider again
the sentence (S) given above: intuitively, the term algebra generated by
the signature Σ = {z, s} is isomorphic to the algebra of natural numbers,
and f can be interpreted as the addition on these numbers. The sentence,
which expresses the commutativity of f , belongs to TFT Ind but cannot be
proven without induction, and therefore does not belong to TFT .

From the previous results we gather that the acyclicity property is
strictly weaker than the principle of induction, while at the same time
being sufficiently strong to ensure the completeness of TFT on pure term
algebra formulas.

5.3 First-Order Logic and Superposition

We now recall some definitions related to first-order logic and the super-
position calculus. A more complete overview of these topics can be found
in [84].

First-order theorem provers work by applying inferences to a set of
clauses and adding the conclusions to that set. The typical application
is to find refutation proofs, by deriving the empty clause from a set
that initially contains hypotheses and a negated conjecture. Satisfiability
results are also possible if the empty clause is not found and the set is
saturated – no new inferences are possible among its clauses. The calculi
used by these provers are based on the superposition calculus, which has
the property of being refutationally complete: for any unsatisfiable set of
clauses, there exists a refutation proof in the calculus.
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Terms appearing in clauses may contain variables (denoted x, y, z, . . . )
which are implicitly universally quantified. To perform inferences between
such quantified clauses, rules in the superposition calculus require the
detection of unifiable terms and the computation of a substitution under
which those terms are equal. A substitution is a function from variables
to terms. Given a term t and a substitution θ, we denote by tθ the
application of θ to t, in which all occurrences of variables x1, . . . , xn in
t have been simultaneously replaced by x1θ, . . . , xnθ. Application of a
substitution can be extended to literals and clauses. The composition of
two substitutions σ and τ is the function that takes every variable x to
(xσ)τ . It is itself a substitution and is denoted στ . An equation is a pair
of terms, denoted s ?

= t, and a substitution θ is a unifier of s and t, or
a solution of the equation, if sθ = tθ. Moreover, if for every unifier τ of
an equation E, there exists a substitution δ such that τ = σδ, then σ is
a most general unifier (mgu) of E. The notions of unifier and mgu can
be applied to a finite set of equations, if the substitution is a solution of
every equation in the set.

To direct the proof search, first-order theorem provers use a selection
function, a function that selects a non-empty subset of literals in any
non-empty clause. The selection function is used to restrict the number
of possible inferences (resolution is performed only on selected literals,
for example) while preserving refutational completeness of the system,
provided that the function satisfies certain properties. Different selection
functions may be used, leading to variations of the calculus. To indicate
that a literal is among the selected literals in a clause, we show it over a
gray background, e.g., s ≈ t ∨ C.

The calculus is also parametrized by an ordering on terms. This is
another important component to limit possible inferences and ensure the
efficiency of the proof search. However the rule described in the following
does not use order restrictions, therefore we do not describe the notion
further.

5.4 An Inference Rule for Acyclicity

In this section we describe an inference rule that extends the superposi-
tion calculus and allows reasoning about the acyclicity property without
adding the corresponding axioms to the set of clauses to saturate.

In the remainder of this text, it is important to distinguish symbols
belonging to Σ (term constructors) from other symbols. This distinction is
necessary because the rule must be applicable and sound even for problems
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that contain uninterpreted symbols or other theory symbols. Indeed, even
clauses resulting from the clausification of a pure term algebra formula
may contain non-constructor symbols, in particular those introduced by
Skolemization. Constructors are denoted by the letters e, f, g, . . . while
we use s, t, u, . . . to denote arbitrary terms.

Definition 10. We say that a term s occurs under term constructors in
a term t, if t is of the form f(u1, . . . , un) and there exists ui with 1 6 i 6 n
such that either:

1. s = ui

2. s occurs under term constructors in ui.

We will use the notation p[s]Σ to denote a term in which s occurs under
constructors. For any ground terms s and p[s]Σ and any interpretation
I that satisfies the instances of axiom schema (A4), it must be the case
that I(p[s]Σ) 6= I(s).

Definition 11. The inference rule Acycl+, which takes an arbitrary num-
ber n of premises, is defined as follows:

t′1 ≈ p[t2]Σ ∨ C1 t′2 ≈ q[t3]Σ ∨ C2 . . . t′n ≈ r[t′1]Σ ∨ Cn
Acycl+

(C1 ∨ C2 ∨ · · · ∨ Cn)θ

where θ is an mgu of the set of equations {t1 ?
= t′1, . . . , tn

?
= t′n}.

In essence, this rule finds a set of equalities that contradict the acyclic-
ity property under a certain substitution. Since these equalities cannot
all be true under the substitution, the conclusion indicates that at least
one Ci must be true. We first illustrate this principle with some examples
of concrete applications, then demonstrate the soundness of the inference
rule with Lemma 8.

Example 1. In this simple example, the rule has only one premise and
the unifier is the empty substitution:

s ≈ g(e, f(s)) ∨ C
C

Example 2. Here is a more complex example of application of the rule,
with three premises:

s ≈ f(t) ∨ C1 t ≈ g(u(x), e) ∨ C2[x] u(s) ≈ f(s) ∨ C3
C1 ∨ C2[s] ∨ C3
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The substitution {x 7→ s} is used as unifier and applied to the conclusion.

Example 3. Consider the clause

s ≈ f(u(s)) ∨ C

The rule may not be applied to this clause without additional premises,
as s does not occur under term constructors in the right-hand side of
the selected literal. Since u is not a term algebra constructor, there
exist interpretations that associate u(s) with a term (in the domain of
discourse) not featuring s as a subterm, and in which s ≈ f(u(s)) holds.

Lemma 8 (Soundness of Acycl+). For any interpretation I that satisfies
the instances of axiom schema (A4), if the premises of the rule hold in I,
then the conclusion holds in I as well.

Proof. Let θ be a unifier of the equations {t1 ?
= t′1, . . . , tn

?
= t′n} (in

particular, θ may be an mgu, although this is not required for soundness).
By contradiction, assume that (C1 ∨ C2 ∨ · · · ∨ Cn)θ does not hold

in I. Instances of the premises (t′1 ≈ p[t2]Σ ∨ C1)θ, (t′2 ≈ q[t3]Σ ∨ C2)θ,
. . . , (t′n ≈ r[t1]Σ ∨ Cn)θ hold in I, therefore it must the case that (t′1 ≈
p[t2]Σ)θ, (t′2 ≈ q[t3]Σ)θ, . . . , (t′n ≈ r[t1]Σ)θ also hold. Since tiθ = t′iθ

for 1 6 i 6 n, there exists at least one ground term p′[t1θ]Σ such that
I(p′[t1θ]Σ) = I(t1θ), which contradicts the hypothesis on I.

In addition to Acycl+, we can also add a rule to deal with disequalities:

t 6≈ p[t]Σ ∨A
Acycl−

∅
As denoted by the double line, this is a simplification rule, i.e., a rule
that deletes its premise after application. Here the rule generates no
conclusion, but merely deletes a clause that is always true in the theory.
Such rules do not add to the deductive power of the calculus, but by
deleting useless clauses they lighten the load of the prover and thus play
an important practical role. Their application is also very inexpensive
and should be carried out eagerly: every time a clause is generated it may
be tested against this rule and discarded when applicable.

5.5 Implementation

There exist different saturation algorithms, as described in [117], but in
general a prover will maintain a set of active clauses such that all possible
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inferences between these clauses have been performed. Every time a new
clause C is selected for inference, all active clauses must be tested to check
whether they can participate in an inference with C. In the case of the
rule Acycl+, this test is particularly difficult:

1. An arbitrary number of clauses can participate in the inference.
Assuming that the number of active clauses is k, an exhaustive test
of the 2k possible combinations would be very impractical, given
that k is often large. In contrast, all other rules of the standard
superposition calculus are either unary or binary.

2. The rule requires computing an mgu over a set of equations, rather
than over a single equation like other rules of the calculus. While
this problem is well-known and can be solved efficiently [97], first-
order theorem provers typically avoid solving it directly and instead
rely on term indexing [125] to retrieve, among a set of indexed terms,
all of those that are unifiable with a given term t.

In order to achieve a practical implementation of the rule, it is important
to develop an indexing strategy enabling the prover to retrieve sets of
clauses to be used as premises. In this section we describe an algorithm
that accomplishes this.

5.5.1 Data Structures

The indexing strategy relies on the use of two auxiliary data structures
to retrieve terms, literals and clauses that appear among the set of active
clauses.
Subterm index. This index must support queries over terms with the
following invariant: given a term s, the query subtermClause(s) must
return all pairs (t, C) such that t is a term and C is an active clause of the
form s ≈ p[t]Σ ∨ C′. This index can be implemented straightforwardly as
a map, and must be updated every time a clause is added to or removed
from the set of active clauses.
Unification index. This index supports a query over terms: given a
term s, the query unifiable(s) returns all pairs (t, σ) such that there
exists an active clause s′ ≈ t ∨ D and s′ is unifiable with s under an
mgu σ. Like the other one, this index must be updated every time the
set of active clauses is modified. The efficient implementation of such
an index is not trivial: unlike the subterm index, a query upon term s

may return results even if s does not appear in any of the active clauses.
Efficient retrieval of unifiable terms is central to the implementation of
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first-order theorem provers, and any state-of-the-art prover should offer
data structures that can be used to implement such an index.

5.5.2 Retrieving Premises

Every time a new clause C is selected for inference, we call the procedure
performInferences(C) to perform all possible inference between C and
active clauses. For this, the subterm and unification indexes are first
updated to include C, then a search is conducted to find the sets of
premises.

We give now a procedure to detect all sets of premises among active
clauses – more precisely, all minimal sets with respect to subsumption –
and perform the corresponding applications of Acycl+ among the active
clauses (Algorithm 1).

Procedure performInferences(C1) is
for t s.t. C1 = t1 ≈ p[t]Σ ∨ C′ do

enumerate(t1, t, ε, {C1})
end

end

Procedure enumerate(t1, t, θ, P ) is
for (t′, σ) ∈ unifiable(tθ) do

if t′ = t1 then
apply Acycl+ to P under σθ

else
for (ti, Ci) ∈ subtermClause(t′) do

if Ci 6∈ P then
enumerate(t1, ti, θσ, P ∪ {Ci})

end
end

end
end

end

Algorithm 1: A procedure to apply Acycl+ among active clauses

Given two terms t1 and t and a substitution θ, a call to the procedure
enumerate(t1, t, θ, P ) applies Acycl+ to all minimal sets of premises that
include P . Every call to enumerate(t1, t, θ, P ) verifies the following in-
variant: the selected literals in P imply an equality between t1θ and some
term p[tθ]Σ. The parameter P is used to collect the premises. The substi-
tution is computed by composing the mgus of each individual equation,
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starting with the empty substitution ε. The correctness of this construc-
tion is proven in Lemma 9: the side condition of this lemma is satisfied
because variables from distinct clauses are always distinct themselves.

Lemma 9 (Correctness of the mgu). Let θ be an mgu of a set of equations
E and σ an mgu of an equation sθ

?
= t such that t does not contain

variables appearing in E, then:

1. θσ is a unifier of E′ = E ∪ {s ?
= t}

2. θσ is a most general unifier of E′

Proof. Let us first note that since the variables of t do not appear in E,
and θ is an mgu of E, the variables of t do not belong to the domain of
θ, from which we have that tθ = t.

For (1), we have that θ is a unifier of E, therefore for any substitution
δ, θδ is a unifier of E, so in particular this holds for θσ. In addition, as
tθ = t, θσ is also a unifier of sθ ?

= t.
For (2), we must show that for any α that is a unifier of E′, there

exists a substitution δ such that θσδ = α. As E is a subset of E′, α must
also be a unifier of E. As θ is an mgu of E, there exists δ1 such that
θδ1 = α. δ1 is a unifier of {sθ ?

= t}, or equivalently of {sθ ?
= tθ}, and

consequently θδ1 is a unifier of {sθ ?
= t}. As σ is an mgu for that set,

there exists δ2 such that σδ2 = δ1. The substitution δ2 satisfies θσδ2 = α,
showing that θσ is most general.

Lemma 10 (Termination). The procedure performInferences termi-
nates.

Proof. Termination of the procedure follows from the following facts:

1. Queries to the subterm index and the unification index always return
a finite number of results, so that each call to enumerate(t1, t, θ, P )

only makes a finite number of recursive calls.

2. The condition Ci 6∈ P ensures that the depth of the recursion is
bounded by the number of active clauses, as an element is added to
P on every recursive call.

5.6 Experiments

We implemented the new inference rule in the first-order theorem prover
Vampire. As described in [81] (Chapter 4 of this thesis), Vampire already
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provides support for term algebra reasoning, relying on a conservative
extension of the theory to enforce the acyclicity property. Our new
rule can be used instead of this mechanism, and we compare the two
approaches below.

Among currently available benchmarks, few problems rely on the
acyclicity property: many of them are theorems that hold on term algebras
as well as on similar structures that do not satisfy the acyclicity property
(such as algebras of rational trees, described in [95]). For example in [114],
the authors find that only 6 problems (among 4170) are solved exclusively
when the acyclicity rule of CVC4 is activated, a result confirmed by
experiments with Vampire. Moreover, those 6 problems are very simple,
and any prover implementing some form of reasoning about the acyclicity
property should be able to solve them. In order to provide a meaningful
evaluation of the performance of the different techniques for handling the
acyclicity property, we generated 200 new problems1 of various size and
complexity. The problems were constructed by generating DNF formulas
in which each disjunct contains literals that imply a cyclic equality. The
formulas generated in this manner contain between 1 and 20 disjuncts,
each containing between 1 and 20 literals. The signature of the algebra was
also varied across the different problems. We separated the problems in
two sets: the first set contains 100 problems without universal quantifiers,
so that their clausified forms feature only ground terms; the remaining
100 problems include quantifiers, and therefore variables are present after
clausification. No other theories were involved, and the only uninterpreted
symbols are constants which can be seen as Skolem symbols, so that the
problems belong to the decidable fragment of the theory of term algebras.

While these problems do not correspond to real applications of theorem
provers, they allowed us to specifically evaluate reasoning about acyclicity.
In contrast to other available benchmarks, none of these problems can
be solved without some non-trivial way to enforce this property of term
algebras.

We compare four solvers/configurations:

1. VampireInf uses the extended calculus described in this paper.
Axioms (A1)–(A3) are included in the set of clauses to be saturated
(together with the problem hypotheses and negated conjecture) but
no axioms describing the acyclicity property are used.

2. VampireExt uses the standard superposition calculus, and instead
relies on a conservative extension of the theory of term algebras

1These benchmarks are available at http://www.cse.chalmers.se/~simrob/
tools.html
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to reason about the acyclicity property. An additional predicate
symbol is added to the signature, which corresponds to the subterm
relation over terms. In addition to axioms (A1)–(A3), the initial set
of clauses also contains formulas that define the subterm relation.

3. CVC4 is an SMT solver that includes a theory solver for the theory
of finite term algebras [114]. This solver constructs equivalence
classes for terms present in the problem, checking that none of
them correspond to infeasible values (cyclic terms).

4. Z3 [50] is another SMT solver with support for this theory.

Apart from the difference above, VampireInf and VampireExt share
identical parameters. Notably, simplification rules related to term algebra
constructors (as described in [81], Chapter 4 of this thesis) are activated,
as well as AVATAR [134]. All experiments were carried out on a cluster on
which each node is equipped with two quad core Intel processors running
at 2.4 GHz and 24 GiB of memory. The different solvers were run on
each problem with a time limit of 60 seconds.

Initial tests with these problems led to some minor optimizations in
the implementation of the inference rule. After communication with its
developer, the theory solver of CVC4 was also improved on the basis of
these benchmarks. The results that we give here take these improvements
into account. They are presented in Figure 5.1.

Among the 100 problems containing only ground hypothesis clauses,
VampireExt was able to solve 90 of the problems and exceeded the time
limit for the remaining 10 problems. The total time required to solve the
90 problems was nearly 800 seconds. VampireInf however was able to
solve all of the problems, and took less than 14 seconds to do so. Each
individual problem was solved in at most 0.6 second. CVC4 was able to
solve all the problems within the time limit, the combined time to solve
these problems was 45 seconds. Z3 was the most efficient, solving all the
problems in less than 2 seconds.

On the problems containing variables, the results are generally similar
for the two approaches based on superposition: VampireExt solved 93
of the problems before the time limit, taking nearly 700 seconds to do
it, while VampireInf solved all of the problems in less than 12 seconds.
The performance of SMT solvers is however noticeably different on this
set of problems: Z3 solved 76 of the problems fairly quickly (103 seconds)
but exceeded the time limit for the remaining 24 problems, while CVC4
could only solve 12 problems, in 14 seconds.
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Figure 5.1. Time required to solve a number of problems among both
sets. Where no number is given, the solver was unable to solve some of
the problems within the 60-second limit imposed on each run.
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The new inference rule clearly proves useful for solving difficult prob-
lems based on the acyclicity property. In particular, it is the only approach
that succeeded in finding proofs for all 200 problems. This approach was
also very fast on all benchmarks: in the worst case it took 2.5 seconds to
find a proof, while all other problems were solved in less than 1 second.

The presence of non-ground terms in the hypotheses does not affect
the performance of VampireExt, nor that of VampireInf, despite the
added complexity of finding relevant premises among active non-ground
clauses. This is in contrast with the performance of SMT solvers, which
is negatively affected by the presence of variables in the clauses.

5.7 Related Work

The idea of replacing axioms by an inference rule is central to paramodu-
lation [138], and consequently to the advent of useful first-order theorem
provers. Paramodulation is a rule that replace the axioms of the equality
predicate. While finite, the axiomatization of the equality predicate is
potentially large, as one additional formula is required for each symbol in
the signature. It is theoretically possible to reason about equality without
paramodulation, but in practice only very simple problems can be solved
that way.

In its form, the rule presented here shares some similarity with the
hyper-resolution rule introduced by Robinson [119], as it finds a resol-
vent among an arbitrary number of clauses. Efficient implementation of
hyper-resolution is notoriously difficult, solutions have been proposed by
Overbeek [102]. However, hyper-resolution seems to have fallen out of
favor among modern provers, perhaps because it yields only small benefits
compared to binary resolution.

The acyclicity property is of some importance in Prolog, where it cor-
responds to the occur-check of the unification algorithm. For performance
reasons, many Prolog implementations do not enforce this check. This
means that such implementations actually solve equations over algebras
of infinite trees [37]. This change in semantics has been formalized by van
Emdem et al. [131], while Plaisted [106] and Apt [3] establish criteria to
determine whether the omission of the occur-check modifies the semantics
of a given program.

Decisions procedures based on quantifier elimination have been used
to show the completeness of the theory of term algebras, for example by
Maher [95], or by Rybiana et al. in the context of a theory extended with
queues [122]. More practical decision procedures have been described and
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evaluated [128, 130]. Barrett et al. have introduced a theory solver for
inductive data types in the SMT solver CVC4 [12] and the SMT solver Z3
uses a comparable theory solver (unpublished work by de Moura). These
developments allow reasoning about problems that contain uninterpreted
symbols, as well as mixed theories. Reynolds et al. have provided a
theory solver that can also reason about co-inductive data types [114],
while Bjørner has included a decision procedure for both inductive and
co-inductive data types in STeP, the Stanford Temporal Prover [21]. In
his PhD thesis, Wand proposes an extension of the superposition calculus
with support for inductive data types and inductive reasoning over these
types [136].

5.8 Conclusion

We have presented an inference rule aimed at replacing the infinitely
many axioms needed to describe the acyclicity property of term algebras.
Thanks to the indexing strategy described, an efficient implementation
of the rule can be achieved in theorem provers. In comparison to other
techniques applicable in saturation-based prover (in particular, the theory
extension described in our previous work [81], Chapter 4 of this thesis),
this rule generates fewer consequences and does not needlessly expand
the search space, leading to better performance. The rule is not proven to
be complete with respect to the axioms of acyclicity, but it is empirically
shown to outperform other approaches for reasoning about the acyclicity
property of term algebras.

Similar approaches could be used to reason about other theories with-
out finite axiomatizations. In particular the theory of infinite trees [37]
is a good candidate. This theory provides a first-order semantics for co-
inductive data types [114] and shares many similarities with the theory
of term algebras. Notably, its uniqueness property – which asserts the
existence of unique cyclic elements – is not finitely axiomatizable. A
better characterization of that theory and its properties, in particular
from the point of view of automated theorem proving, would be helpful
for program verification and interactive theorem proving.
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Chapter 6

Superposition with
Datatypes and Codatatypes

Jasmin Blanchette, Nicolas Peltier and Simon Robillard

Abstract. The absence of a finite axiomatization of the first-order the-
ory of datatypes and codatatypes represents a challenge for automatic
theorem provers. We propose two approaches to reason by saturation
in this theory: one is a conservative theory extension with a finite num-
ber of axioms; the other is an extension of the superposition calculus,
in conjunction with axioms. Both techniques are refutationally com-
plete with respect to nonstandard models of datatypes and nonbranching
codatatypes. They take into account the acyclicity of datatype values
and the existence and uniqueness of cyclic codatatype values. We im-
plemented them in the first-order prover Vampire and compare them
experimentally.

Originally published in 9th International Joint Conference on Automated
Reasoning (IJCAR 2019), volume 10900 of LNCS, pages 370-387. Springer,
2018.
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6.1 Introduction

The ability to reason about inductive and coinductive datatypes has many
applications in program verification, formalization of the metatheory of
programming languages, and even formalization of mathematics. Induc-
tive datatypes, or simply datatypes, consist of finite values freely generated
from constructors. Coinductive datatypes, or codatatypes, additionally
support infinite values. Non-freely generated (co)datatypes are also use-
ful. All of these variants can be seen as members of a single unifying
framework (Section 6.2).

It is well known that the first-order theory of datatypes cannot be
finitely axiomatized. Distinctness, injectivity, and exhaustiveness of con-
structors are easy to axiomatize, but acyclicity is more subtle, and for
induction we would need an axiom schema or a second-order axiom. Co-
datatypes are also problematic: Besides a coinduction principle that is
dual to induction, they are characterized by the existence of all possible
infinite values, corresponding intuitively to infinite ground terms. Both
datatypes and codatatypes represent a challenge for automatic theorem
provers.

Superposition [6] is a highly successful calculus for reasoning about
first-order clauses and equality. There has been some work on extend-
ing superposition with induction [46, 136], including by Kersani and
Peltier [75], and on the axiomatization of datatypes, including by Kovács,
Robillard, and Voronkov [81] (Chapter 4 of this thesis). In this paper,
we propose both axiomatizations and extensions of the superposition cal-
culus to support freely and non-freely generated datatypes as well as
codatatypes.

We first focus on a conservative extension of the theory with a finite
number of first-order axioms that capture the basic properties of con-
structors, acyclicity of datatype values, uniqueness of cyclic (ω-regular)
codatatype values, and existence of all codatatype cyclic values (Sec-
tion 6.3). These axioms admit nonstandard models; for example, for
the Peano-style natural numbers freely generated by zero : nat and
suc : nat → nat , we cannot exclude the familiar nonstandard models
of arithmetic, in which arbitrarily many copies of Z may appear besides
N. Similarly, the domains interpreting codatatypes are not guaranteed to
contain all infinite acyclic values.

The axiomatization of codatatypes up to a suitable notion of nonstan-
dard models constitutes the first theoretical contribution of this paper.
Our second, and main, theoretical contribution is an extension of super-
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position with inference rules to reason about datatypes and codatatypes
(Section 6.4). This is inspired by an acyclicity rule that Robillard pre-
sented at the Vampire 2017 workshop [118] (Chapter 5 of this thesis). The
main distinguishing feature of our rules is that they are (in combination
with a few axioms) refutationally complete and their side conditions have
some new order restrictions, helping prune the search space. On the other
hand, our approach also requires a relaxation of the side conditions of
the superposition rule: For clauses of the form c(s̄) ≈ t ∨ C, where c is
a constructor and the first literal is maximal and positive, superposition
inferences onto t must be performed, as in ordered paramodulation [4].
In addition, we propose, for the first time, calculus extensions to reason
about codatatypes.

Both the theory extension and the calculus extension are designed
to be refutationally complete with respect to nonstandard models of
datatypes and nonbranching codatatypes—codatatypes whose construc-
tors have at most one corecursive argument (Section 6.5).

The calculus extension can be integrated into the given clause algo-
rithm that forms the core of a prover’s saturation loop (Section 6.6).
The inference partners for the acyclicity and uniqueness rules can be
located efficiently. We implemented both the axiomatic and the calculus
approaches in the first-order prover Vampire [84] and compare them em-
pirically on Isabelle/HOL [100] benchmarks and on crafted benchmarks
(Section 6.7).

6.2 Syntax and Semantics

Our setting is a many-sorted first-order logic. We let τ, υ range over
simple types (sorts), s, t, u, v range over terms, a, b, c, . . . range over func-
tion symbols, x, y, z range over variables, and C,D, E range over clauses.
Literals are atoms of the form s ≈ t or ¬ s ≈ t, also written s 6≈ t.
Clauses are finite disjunctions of literals, viewed as multisets. Substitu-
tions are written in postfix notation, with sσθ = (sσ)θ. The notation x̄
represents a tuple (x1, . . . , xm), where m > 0, and [m,n] denotes the set
{m,m+ 1, . . . , n}, where m 6 n+ 1.

A position p of type τ in t is a position in t such that t|p is of type
τ . If s, t are terms and P is a set of positions of the same type as s in t,
then t[s]P denotes the term obtained from t by replacing the subterms
occurring at a position in P by s: t[s]P := s if ε ∈ P ; t[s]P := t if P = ∅;
and f(t1, . . . , tn)[s]P := f(ti[s]Pi

)i∈[1,n], with Pi = {q | i.q ∈ P} otherwise.
Given two positions p and q, we write p < q if p is a proper prefix of q. Let
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Ctr be a distinguished finite set of function symbols, called constructors.
We reserve the letters c, d, e for constructors. A constructor position in t
is a position q in t such that for every p < q, the head symbol of t|p is a
constructor.

Definition 12. The set of constructor contexts of profile τ → υ is defined
inductively as follows: (1) if t is a term of type υ, then t is a constructor
context of profile τ → υ; (2) if Γ1, . . . ,Γn are constructor contexts of
profile τ → τi and c : τ1×· · ·×τn → υ is a constructor, then c(Γ1, . . . ,Γn)

is a constructor context of profile τ → υ; (3) the hole • is a constructor
context of profile υ → υ.

Every constructor context can be written as Γ[•]P , where P is a set
of constructor positions of the same type in Γ, denoting the positions
of • in Γ. It is empty if ε ∈ P , and constant if P = ∅. We write Γ[•]p
as an abbreviation for Γ[•]{p}, and we write Γ[t]P to denote the term
obtained by replacing every position of P by the term t in the context
Γ[•]P . Moreover, we write τ B υ (“υ depends on τ ”) if there exists a
constructor of profile τ1 × · · · × τn → υ, with τ = τi for some i ∈ [1, n],
and τ ∼ υ if τ B∗ υ and υ B∗ τ .

Proposition 1. Let t be a term and let p be a constructor position in t.
type(t|p) B∗ type(t). Consequently, if Γ[•]P is a nonconstant constructor
context of profile υ → τ , then υ B∗ τ .

Proof. The first result is by an immediate induction on p. Then the
second result follows from the fact that P 6= ∅.

The axioms and rules in this paper are parameterized by the follow-
ing sets. Let Tind and Tcoind be disjoint sets of types, intended to model
datatypes and codatatypes, respectively, and assume that the codomain
of every constructor is in Tind∪Tcoind. Let Ctr inj ⊆ Ctr be a set of construc-
tors, denoting injective constructors. Let ./ be a binary symmetric and
irreflexive relation among constructors; c ./ d indicates that terms with
head symbol c are always distinct from terms with head symbol d. Note
that ./ is not identical to 6=, because the constructors are not necessarily
free.

We introduce some properties of interpretations that are intended to
capture some of the properties of (co)datatypes. An interpretation I
satisfies
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• Exh (exhaustiveness) iff, for every type τ ∈ Tind ∪ Tcoind,

I |=
m∨
i=1

∃x̄i. x ≈ ci(x̄i),

where x is a variable of type τ , {c1, . . . , cm} is the set of constructors
of codomain τ , and x̄i is a (possibly empty) vector of pairwise distinct
variables of the appropriate length and types;

• Inf (infiniteness) iff, for every type τ ∈ Tind ∪ Tcoind, the domain of τ is
infinite;

• Acy (acyclicity, for datatypes) iff, for every type τ ∈ Tind and for every
nonempty constructor context Γ[•]p of profile τ → τ , where p is a
position, we have

I |= Γ[x]p 6≈ x,

where x is a variable of type τ not occurring in Γ;

• FP (existence and uniqueness of fixpoints, for codatatypes) iff, for every
type τ ∈ Tcoind, for every nonempty constructor context Γ[•]P : τ → τ ,

I |= (∃x. Γ[x]P ≈ x) ∧ (Γ[x]P ≈ x ∧ Γ[y]P ≈ y =⇒ x ≈ y),

where x, y are distinct variables of type τ not occurring in Γ

• Dst (distinctness of constructors) iff, for every pair of constructors c,
d of the same codomain such that c ./ d,

I |= c(x̄) 6≈ d(ȳ)

where x̄ and ȳ are disjoint vectors of pairwise distinct variables of the
appropriate length and types;

• Inj (injectivity) iff, for every n-ary constructor c ∈ Ctr inj and pairwise
distinct variables x1, . . . , xn, y1, . . . , yn of the appropriate types,

I |= c(x1, . . . , xn) ≈ c(y1, . . . , yn) =⇒
n∧
i=1

xi ≈ yi.

Most datatypes occurring in practice are recursive, so condition Inf

is usually satisfied. In particular, it is the case for any nonempty freely
generated (co)datatype τ such that τ B+ τ . Conditions Dst and Inj

are defined by finite sets of axioms, but not conditions Acy and FP. In

118



Section 6.3, we introduce conservative extensions of the considered formula
so that conditions Acy and FP are satisfied. Then in Section 6.4, we
replace some of these axioms by inference rules.

We assume that τ 6∼ υ whenever τ ∈ Tind and υ ∈ Tcoind. Intuitively,
this condition means that a datatype cannot be defined by mutual recur-
sion with a codatatype, which is a very natural restriction [25]. If this
condition does not hold, it is easy to see that there is no interpretation
that satisfies both Acy and FP. On the other hand, we may have τ B+ υ

or υ B+ τ with τ ∈ Tind and υ ∈ Tcoind—a datatype can depend on a
codatatype or vice versa. There may also exist types not belonging to
Tind ∪ Tcoind, and the types in Tind ∪ Tcoind may depend on them. Finally,
we assume without loss of generality that for each type τ , there exists a
ground term t (not necessarily built from constructors) of type τ .

6.3 Axioms

The axioms Exhaust for exhaustiveness, Dist for distinctness, and Inj for
injectivity correspond to the formulas used to express the properties Exh,
Dst, and Inj in Section 6.2. The other axioms are introduced below.

6.3.1 Acyclicity

For all types τ, υ such that τ ∼ υ, we introduce a predicate symbol subτυ
on τ × υ together with the following axioms, where τ ∼ υ ∼ υ′ and
c : · · · × υ × · · · → υ′ is a constructor:

Sub1: subττ (x, x) Sub2: ¬ subτυ(x, y) ∨ subτυ′(x, c(z̄, y, z̄
′))

NSub: ¬ subυ
′

τ (c(z̄, x, z̄′), x) if τ ∈ Tind

Let Sub = Sub1 ∧ Sub2. The least fixpoint model of Sub is the usual
subterm relation for constructor terms. The axiom NSub states that no
term of a type in Tind may occur at a nonempty constructor position in
itself.

Proposition 2. Let Γ[•]p be a constructor context of profile υ → τ , where
p is a position of type υ in Γ and τ ∼ υ. Then Sub |= subυτ (x,Γ[x]p),
where x is a variable of type υ.

Proof. By an immediate induction on Γ.

119



Definition 13. An interpretation I is sub-minimal if, for all τ ∼ υ,
subτυ(x, y) is equivalent to∨

{∃z̄. y ≈ Γ[x]p | Γ[•]p is a constructor context of profile τ → υ}

where z̄ denotes the vector of variables in Γ that are distinct from x, y.

Proposition 3. Any sub-minimal interpretation satisfies Sub.

Proof. Let I be a sub-minimal interpretation. By letting p = ε in Def-
inition 13, we deduce that I |= sub(x, x). Furthermore, for any val-
uation η such that I, η |= sub(x, y), we have I, η |= ∃z̄′′. y ≈ Γ[x]p,
for some constructor context Γ[•]p; thus I, η′ |= y ≈ Γ[x]p, for some
extension η′ of η (we assume by renaming that z̄′′ is disjoint from the
vectors of variables z̄ and z̄′ occurring in Sub2). Consequently I, η′ |=
c(z̄, y, z̄′) ≈ c(z̄,Γ[x]p, z̄

′), hence I, η′ |= c(z̄, y, z̄′) ≈ c(z̄,Γ, z̄′)[x]i.p, with
i = |z̄| + 1, and thus I, η |= ∃z′′. c(z̄, y, z̄′) ≈ c(z̄,Γ, z̄′)[x]i.p. It is clear
that c(z̄,Γ, z̄′)[•]i.p is a constructor context, hence by Definition 13, we
have I, η |= sub(x, c(z̄, y, z̄′)). Consequently, I |= Sub.

6.3.2 Contexts and Fixpoints

For every pair of types τ, υ ∈ Tcoind with τ ∼ υ, we introduce a type τ υ
to denote contexts Γ[•]P of profile υ → τ .

Let holeυ (for every υ ∈ Tcoind) be a constant of type υ υ, denoting
an empty context. All constructors c : τ1 × · · · × τn → τ and types υ
such that ∃i υ B∗ τi are associated with new n-ary constructors c υ :

υ1 × · · · × υn → τ υ, where for every i ∈ [1, n], υi = τi υ if υ B∗ τi
and υi = τi otherwise. Let appτυ : τ υ × υ → τ , cycυ : υ υ → υ, and
cstτυ : τ → τ υ be new function symbols. As usual, type indices are often
omitted for readability. Intuitively, if y denotes the context Γ[•]P , then
app(y, x) denotes the term Γ[x]P , cyc(y) denotes the fixpoint of Γ[•]P ,
and cstτυ denotes a constant context (i.e., a context Γ[•]P with P = ∅).

We consider the following axioms, where υ ∈ Tcoind and x, y, xi, zi are
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pairwise distinct variables of the appropriate types:

App1: appτυ(cstτυ(x), y) ≈ x App2: appυυ(holeυ, y) ≈ y
App3: appτυ( c υ(x1, . . . , xn), y) ≈ c(t1, . . . , tn)

if c : τ1 × · · · × τn → τ is a constructor and ∃i υ B∗ τi
with ti = appτiυ (xi, y) if υ B∗ τi and ti = xi otherwise

Uniq: x ≈ holeυ ∨ y 6≈ appυυ(x, y) ∨ z 6≈ appυυ(x, z) ∨ y ≈ z
Cycl: cycυ(x) ≈ appυυ(x, cycυ(x))

Hole1: holeυ 6≈ cstυυ(x) Hole2: holeυ 6≈ c υ(x1, . . . , xn) if c : · · · → υ

Let App = App1 ∧ App2 ∧ App3 and Hole = Hole1 ∧ Hole2.

Example 4. Let c : τ0 × υ → τ be a constructor, with υ B∗ τ0. Then
the profile of c υ is τ0 υ × υ υ → τ υ. The term t := c υ(cstτ0υ (x), holeυ)

encodes the constructor context c(x, •). If a : υ, then

appτυ(t, a) =App c(app
τ0
υ (cstτ0υ (x), a), appυυ(holeυ, a))

=App c(x, app
υ
υ(holeυ, a))

=App c(x, a)

where =App denotes equality modulo App (i.e., s =App t ⇐⇒ App |= s ≈
t).

By contrast, if υ 6B∗ τ0, the profile of c υ is τ0 × υ υ → τ υ, and
the above context is encoded by t′ := c υ(x, holeυ), with appτυ(t′, a) =App

c(x, a). The difference between the two cases is that if υ 6B∗ τ0, then all
the contexts of profile υ → τ0 are constant. Thus they may be replaced
by terms of type τ0. There is no need to encode them using the function
cst.

Remark 3. The axiom Uniq can be replaced by

Uniq′: x ≈ holeυ ∨ y 6≈ appυυ(x, y) ∨ y ≈ cycυ(x)

for υ ∈ Tcoind. Indeed, it is clear that Uniq ∧ Cycl ⇐⇒ Uniq′ ∧ Cycl.

Proposition 4. Let t be a ground term of type τ υ, with τ, υ ∈ Tcoind and
τ ∼ υ. There exists a ground constructor context Γ[•]P of profile υ → τ

such that App |= appτυ(t, x) ≈ Γ[x]P , for all variables x : υ. Furthermore,
if t 6= holeτ , then ε 6∈ P .

Proof. The proof is by induction on t. If t = holeτ , then App2 |=
app(t, x) ≈ x. Let Γ[•]P = • with P = {ε}. By definition, Γ[x]P = x
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hence App |= app(t, x) ≈ Γ[x]P . If t = cstτυ(s), then App1 |= appτυ(t, x) ≈
s. Let Γ = s and P = ∅. By definition, Γ[x]P = s, hence App |=
app(t, x) ≈ Γ[x]P . Now assume that t = c (t1, . . . , tn). We have App3 |=
app(t, x) ≈ c(t′1, . . . , t

′
n) with t′i = app(ti, x) if υ B∗ τi and t′i = ti oth-

erwise. Let i ∈ [1, n] such that υ B∗ τi. Then we have necessarily
τi ∈ Tcoind, hence by the induction hypothesis, there exists a ground
constructor context Γi[•]Pi such that App |= app(ti, x) ≈ Γi[x]Pi . If
υ 6B∗ τi, then we let Γi = ti and Pi = ∅. Let Γ = c(Γ1, . . . ,Γn) and
P = {i.q | i ∈ [1, n], q ∈ Pi}. It is clear that Γ[x]P ≈ c(Γi[x]Pi

)i∈[1,n],
thus App |= app(t, x) ≈ Γ[x]P . It is easy to check that the second part of
the proposition is satisfied in every case.

Proposition 5. Let Γ[•]P be a constructor context of profile υ → τ . If
τ, υ ∈ Tcoind and τ ∼ υ, there exists a term u : τ υ such that App |=
app(u, x) ≈ Γ[x]P , for all variables x : υ. Furthermore, if ε 6∈ P , the head
symbol of u is either cst or a symbol c .

Proof. The proof is by induction on Γ. If ε ∈ P , then Γ[x]P = x and
τ = υ. Let u = holeτ . By definition, we have App2 |= app(u, x) ≈ x.
If P = ∅, then Γ[x]P = Γ and Γ is a term of type τ . Let u = cstτυ(Γ).
We have App1 |= appτυ(u, x) ≈ Γ. Otherwise, P contains a nonempty
position, hence Γ must be of the form c(Γ1, . . . ,Γn) for some constructor
c : τ1 × · · · × τn → τ . Furthermore, there exists i ∈ [1, n] such that
υ B∗ τi. Let Pi = {q | i.q ∈ P}, for i ∈ [1, n]. Let i ∈ [1, n] such
that τi B∗ υ. We have τi ∈ Tcoind, hence, by the induction hypothesis,
there exists a term ui such that App |= app(ui, x) ≈ Γi[x]Pi . If τi 6B∗ υ,
then all the constructor contexts of profile υ → τi are constant, thus Γi
is a term, and we let ui = Γi. Let u = c (u1, . . . , un). By App3, we
deduce App |= app( c (u1, . . . , un), x) ≈ c(u1, . . . , un), where ui = Γi[x]Pi

if τi ∼ υ and ui = Γi otherwise. If P contains a position of the form i.q,
then necessarily τi ∼ υ, thus we have Γ[x]P = c(u1, . . . , un). Hence App |=
app(u, x) ≈ Γ[x]P . It is clear that the second part of the proposition holds
in every case.

6.3.3 Soundness and Completeness

We prove that the above axioms indeed capture all the intended properties.

Lemma 11 (Soundness of the Axioms). If interpretation I satisfies Acy

and FP, there exists a sub-minimal extension J of I validating Sub,
NSub, App, Uniq, Cycl, and Hole.
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Proof. To simplify notations, we assume that I is a term model (on an
extended signature, with an infinite set of new constant symbols denoting
elements of the domain). We define the extension J of I and check that
it fulfills all the desired properties:

• The interpretation of sub is defined in such a way that J is sub-
minimal. By Proposition 3, J |= Sub. If J 6|= NSub, then J |=
∃z̄, x, z̄′. sub(c(z̄, x, z̄′), x). By definition of the interpretation of sub,
this entails that I |= ∃z̄, x, z̄′, ȳ. x ≈ Γ[c(z̄, x, z̄′)]p, for some construc-
tor context Γ and position p, where ȳ denotes the vector of variables
in Γ. This contradicts the fact that I satisfies condition Acy.

• The domain of τ υ is the set of ground terms of type τ υ defined on
the signature (modulo equality on elements of I), with fJ (t̄) = f(t̄),
for any function symbol f of codomain τ υ and for any vector of ground
terms t̄. This set is not empty since it contains cstτυ(t) for every ground
term t : τ (and all types are inhabited). Furthermore, J |= Hole, since
two ground terms with distinct heads are necessarily (syntactically)
distinct.

• We define the interpretation of app(u, v) by induction on u, using the
equations in App as rewrite rules, from the left to the right, replacing
the constructors c in the right-hand side by their interpretation in I.
It is clear that app is unambiguously and completely defined, and by
definition J |= App. We check that J |= Uniq. Let u be a ground term
of type τ υ distinct from holeυ. By Proposition 4, there exists a ground
constructor context Γ[•]P such that App |= app(u, x) ≈ Γ[x]P , with ε 6∈
P . Thus J |= app(u, y) ≈ y∧app(u, z) ≈ z =⇒ Γ[y]P ≈ y∧Γ[z]P ≈ z,
where y, z are variables some type τ ∈ Tcoind. Since I satisfies condition
FP, this entails that J |= app(u, y) ≈ y ∧ app(u, z) ≈ z =⇒ y ≈ z.
Thus J |= Uniq.

• Let u be a ground term of type τ υ with τ ∈ Tcoind. By Proposi-
tion 4, there exists a ground constructor context Γ[•]P such that App |=
app(u, v) ≈ Γ[v]P . We define the interpretation of cycτ (u) as the unique
fixpoint of Γ[•]P . By definition, we have J |= Γ[cycτ (u)]P ≈ cycτ (u),
therefore J |= app(u, cycτ (u)) ≈ cycτ (u). Hence J |= Cycl.

Lemma 12 (Completeness of the Axioms). Any model of the set of
axioms {Sub,NSub,App,Uniq,Cycl,Hole} fulfills Acy and FP.
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Proof. Let I be a model of {Sub,NSub,App,Uniq,Cycl,Hole}.
Acyclicity: If I does not satisfy condition Acy, there exists a

nonempty constructor context Γ[•]p of type τ ∈ Tind such that I |=
∃x, z̄. x ≈ Γ[x]p, where z̄ denotes the vector of variables in Γ. Since p 6= ε,
p is of the form q.i, for some number i, and the subcontext at position
q in Γ[•]P is of the form c(ū, •, v̄), for some constructor c. By definition
Γ[c(ū, x, v̄)]q = Γ[x]p; thus I |= ∃x, z̄. x ≈ Γ[c(ū, x, v̄)]q. By Proposition 2,
we deduce that I |= sub(c(ū, x, v̄), x), yielding a contradiction with the
axiom NSub.

Let Γ[•]P be a nonempty constructor context of profile τ → τ . By
Proposition 5, there exists a term t′ : τ τ such that App |= app(t′, x) ≈
Γ[x]P , and we have I |= app(t′, x) ≈ Γ[x]P (∗). Note that, by Hole,
I |= t′ 6≈ holeτ , since the head symbol of t′ is cst or c .

• Existence of fixpoint: By (∗), I |= app(t′, cyc(t′)) ≈ Γ[cyc(t′)]P . By
Cycl, we deduce that I |= cyc(t′) ≈ Γ[cyc(t′)]P ; thus I |= ∃x. Γ[x]P =

x.

• Uniqueness: By (∗), I |= Γ[x]P ≈ x ∧ Γ[y]P ≈ y =⇒ app(t′, x) ≈
x ∧ app(t′, y) ≈ y. By Uniq, we deduce that I |= Γ[x]P ≈ x ∧ Γ[y]P ≈
y =⇒ x ≈ y.

Lemma 13 (Completeness of the Theory). Let T be the theory of free
constructors, as defined by the properties Exh, Inf , Acy, FP, Dst, and
Inj, with Ctr inj = Ctr and c ./ d for all distinct constructors c and d.
If S is a first-order sentence in which the only symbols occurring are
constructors and equality (≈), then either T |= S or T |= ¬S .

Comon and Lescanne [41] provide a decision procedure for equational
formulas over finite and infinite trees, which correspond respectively to
freely generated datatypes and codatatypes. It is based on a collection
of equivalence-preserving transformation rules for eliminating quantifiers
and normalizing the formulas. The set of formulas T = {Dist, Inj,Exhaust,
Sub,NSub,App,Uniq,Cycl,Hole} forms the axiomatization of a conserva-
tive extension of the theory of (co)datatypes. We can thus derive a
decision procedure for testing satisfiability of first-order sentences S con-
taining only constructors symbols and the equality predicate in the above
theory. By interleaving the steps of two fair saturation procedures of the
superposition calculus, the first over S ∪ T and the second over ¬S ∪ T ,
one of the two attempts is guaranteed to derive a refutation in finite
time.
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6.4 Inference Rules

As an alternative to the above axiomatization, we propose an extension
of the superposition calculus [6] with dedicated rules. Unless otherwise
noted, the usual conventions of superposition apply. The standard notion
of redundancy is used, with respect to the theory of equality. The notation
[¬] s ≈ t indicates that the literal is selected by a well-behaved selection
function. We let [¬] s ≈ t stand for either s ≈ t or s 6≈ t.

6.4.1 Superposition

We denote by SP the usual rules of the superposition calculus, called Sup,
EqRes, and EqFact below, with a slight relaxation of the application con-
ditions of Sup: Superposition inside the nonmaximal term of an equation
is allowed if the head symbol of the maximal term is a constructor. This
ensures that in the rewrite system built from saturated clause sets for
defining a model, the right-hand side of every rule is irreducible if the
head of the left-hand side is a constructor. This property is crucial for
the completeness results.

Thus, our superposition rule is as follows:

t ≈ s ∨ C [¬] u[t′] ≈ v ∨ D
Sup

([¬] u[s] ≈ v ∨ C ∨ D)σ

where σ = mgu{t ?
= t′}, t′ is not a variable, and sσ � tσ; moreover,

uσ � v[t′]σ if [¬] is ¬ or if the head symbol of t is not a constructor.
The equality resolution rule is as usual:

s 6≈ s′ ∨ C
EqResCσ

where σ = mgu{s ?
= s′}.

Similarly for the equality factoring rule:

u ≈ t ∨ u′ ≈ s ∨ C
EqFact

(u ≈ t ∨ t 6≈ s ∨ C)σ

where σ = mgu{u ?
= u′}, tσ � u, and tσ � sσ.

6.4.2 Infiniteness

The next rule captures infiniteness of (co)datatypes:
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(∨n
i=1 x ≈ ti

)
∨ C

InfC
if x is a variable of a type τ ∈ Tind ∪ Tcoind and does not occur in C or
t1, . . . , tn.

Lemma 14 (Soundness of Inf). Let N be a clause set, and let I be a
model of N satisfying Inf . If C is derived from N by Inf, then I |= C.

Proof. Since I satisfies Inf , the domain of τ is infinite. Therefore, for
every valuation η, I, η 6|= ∀x

∨n
i=1 x ≈ ti (since x does not occur in

t1, . . . , tn), hence I, η |= C (since x does not occur in C).

6.4.3 Distinctness

The distinctness property of constructors takes the form of a unary and
a binary rule:

c(s̄) ≈ t ∨ C
Dist1Cσ

if σ = mgu{t ?
= d(x̄)}, where c ./ d and x̄ is a vector of fresh pairwise

distinct variables; and

d(t̄) ≈ u′ ∨ D c(s̄) ≈ u ∨ C
Dist2

(C ∨ D)σ

if c ./ d, σ = mgu{u ?
= u′}, c(s̄)σ 6� uσ, and d(t̄)σ 6� u′σ.

Lemma 15 (Soundness of Dist1 and Dist2). Let N be a clause set, and
let I be a model of N satisfying Dst. If a clause C is derived from N by
Dist1 or Dist2, then I |= C.

Proof. It is easy to check that the conclusion can be derived by superpo-
sition and equality resolution from the premises and the axiom Dist.

6.4.4 Distinctness

The distinctness property of constructors takes the form of a unary and
a binary rule:

c(s̄) ≈ t ∨ C
Dist1Cσ

if σ = mgu{t ?
= d(x̄)}, where c ./ d and x̄ is a vector of fresh pairwise

distinct variables; and
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d(t̄) ≈ u′ ∨ D c(s̄) ≈ u ∨ C
Dist2

(C ∨ D)σ

if c ./ d, σ = mgu{u ?
= u′}, c(s̄)σ 6� uσ, and d(t̄)σ 6� u′σ.

Lemma 16 (Soundness of Dist1 and Dist2). Let N be a clause set, and
let I be a model of N satisfying Dst. If a clause C is derived from N by
Dist1 or Dist2, then I |= C.

Proof. It is easy to check that the conclusion can be derived by superpo-
sition and equality resolution from the premises and the axiom Dist.

6.4.5 Distinctness

The distinctness property of constructors takes the form of a unary and
a binary rule:

c(s̄) ≈ t ∨ C
Dist1Cσ

if σ = mgu{t ?
= d(x̄)}, where c ./ d and x̄ is a vector of fresh pairwise

distinct variables; and

d(t̄) ≈ u′ ∨ D c(s̄) ≈ u ∨ C
Dist2

(C ∨ D)σ

if c ./ d, σ = mgu{u ?
= u′}, c(s̄)σ 6� uσ, and d(t̄)σ 6� u′σ.

Lemma 17 (Soundness of Dist1 and Dist2). Let N be a clause set, and
let I be a model of N satisfying Dst. If a clause C is derived from N by
Dist1 or Dist2, then I |= C.

Proof. It is easy to check that the conclusion can be derived by superpo-
sition and equality resolution from the premises and the axiom Dist.

Remark 4. If t is not a variable, the premise of Dist1 is redundant after
the rule is applied. Unifying t with c(x̄) can be useful when t is a variable.
For example, from the clause c(x) ≈ x, we can derive � by unifying x
with d(ȳ), where d ./ c.

6.4.6 Injectivity

The injectivity property of constructors is also captured by two rules:

c(s1, . . . , sm) ≈ t ∨ C
Inj1

(si ≈ xi ∨ C)σ
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if i ∈ [1,m], c ∈ Ctr inj, σ = mgu{t ?
= c(x1, . . . , xm)}, and x1, . . . , xm are

fresh pairwise distinct variables; and

c(s1, . . . , sm) ≈ u′ ∨ D c(t1, . . . , tm) ≈ u ∨ C
Inj2

(si ≈ ti ∨ C ∨ D)σ

if i ∈ [1,m], c ∈ Ctr inj, σ = mgu{u ?
= u′}, uσ 6� c(s̄)σ, and u′σ 6� c(t̄)σ.

Lemma 18 (Soundness of Inj1 and Inj2). Let N be a clause set, and let
I be a model of N satisfying Inj. If a clause C is derived from N by Inj1
or Inj2, then I |= C.

Proof. It is easy to check that the conclusion can be derived by superpo-
sition and equality resolution from the premises and the axiom Inj.

Remark 5. If Inj1 is applied on every argument i ∈ [1,m] and t is not a
variable, the premise becomes redundant and can be removed. Unifying
t with the term c(x1, . . . , xm) is useful when t is a variable. For example,
given the clause c(x, a) ≈ x, we can derive a ≈ x2 by Inj1, from which �
can be derived by Inf.

6.4.7 Acyclicity

The acyclicity rule attempts to detect constraints that would force a
datatype value to be cyclic. The simplest example is a clause of the form
Γ[s] ≈ s, where Γ is a nonempty constructor context. More generally, the
clauses

s1 ≈ Γ1[s2] s2 ≈ Γ2[s3] · · · sn−1 ≈ Γn−1[sn] sn ≈ Γn[s1]

entail a constraint s1 ≈ Γ1[Γ2[· · · [Γn−1[Γn[s1]]] · · · ]]. Moreover, the rule
must support variables and nonunit clauses, and it should be finitely
branching if we want to incorporate it in saturation-based provers—i.e.,
the set of clauses derivable from a given finite set of premises by a single
rule should be finite. Finally, clauses of the form Γ[x] ≈ s ∨ C, where
x occurs in C, are problematic, because there are infinitely many instan-
tiations of x that can result in a cyclic constraint: s, c(s), c(c(s)), etc.
To cope with all these subtleties, we first need to develop a considerable
theoretical apparatus before we can even state the rule.

Definition 14. A chain built on a nonempty sequence of (variable-
disjoint) clauses (C1, . . . , Cn) under condition D is a sequence (t1, . . . , tn+1)

of terms satisfying the following conditions:
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1. for every i ∈ [1, n], Ci is of the form si ≈ Γi[s
′
i+1]pi ∨ C′i, where pi is

a nonempty constructor position in Γi;

2. there exists a substitution σ such that either (a) σ is an mgu of
E = {s′i

?
= si | i ∈ [2, n]} or (b) σ is an mgu of {s′n+1

?
= s1} ∪ E;

3. ti = siσ for i ∈ [1, n] and tn+1 = s′n+1σ;

4. D =
∨n
i=1 C′iσ;

5. type(t1) ∼ · · · ∼ type(tn+1);

6. (Γi[s
′
i+1]pi ≈ si)σ is strictly maximal in Ciσ, and no literal is selected

in Ciσ;

7. siσ 6� Γi[s
′
i+1]p1σ, for i ∈ [1, n];

8. for every i ∈ [2, n], s′i is not a variable.

The expression Γ1[· · · [Γn[•]pn ] · · · ]p1σ is the chain’s constructor context,
σ is its mgu, and p1. · · · .pn is its constructor position. If t1 = tn+1, the
sequence is called a cycle. A chain is direct if ti 6= tj for all i, j ∈ [1, n+ 1]

with i 6= j and {i, j} 6= {1, n+ 1}, and variable-ended if s′n+1 is a variable.

Remark 6. Conditions 5 to 8 are optional. They help prune the search
space.

Remark 7. It is tempting to replace the condition siσ 6� Γi[s
′
i+1]p1σ for

i > 1 by the stronger condition Γi[s
′
i+1]p1σ � siσ, because if the latter

condition does not hold, the Superposition rule applies into s′i generating
a clause (Γi−1[Γi[s

′
i+1]pi ]pi−1

≈ si−1 ∨ C′i−1 ∨ C′i)θ, where σ is an instance
of θ, and we could construct a smaller chain with the same first and last
terms without using Ci. But this is not compatible with the redundancy
criteria. For example, given {f(x, 1) ≈ c(g(x)), g(x) ≈ c(f(x, x)), f(0, 1) ≈
c(c(f(0, 0)))} with g(0) � c(f(0, 0)), c(f(1, 1)) � g(1), no chain from f(1, 1)

to f(1, 1) could be derived (with the strengthened condition), because
f(x, 1) ≈ c(c(f(x, x))) is redundant (assuming we have x ≈ 0 ∨ x ≈ 1).
Indeed, f(0, 1) ≈ c(c(f(0, 0))) occurs in the set, and f(1, 1) ≈ c(c(f(1, 1)))

can easily be derived from smaller instances by substitutivity.

We state some basic properties of chains:

Proposition 6. Let (t1, . . . , tn+1) be a chain, and let i, j ∈ [1, n + 1],
with i ≤ j. With the notations of Definition 14, we have

C1, . . . , Cn |= D ∨ (ti ≈ Γi[· · · [Γj−1[tj ]pj−1 ] · · · ]pi)σ
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In particular, if tn+1 = t1, then

C1, . . . , Cn |= D ∨ (tj ≈ Γj [· · · [Γn[Γ1[· · · [Γi−1[ti]pi−1
] · · · ]p1 ]pn ] · · · ]pj )σ

Proof. The proof follows immediately from the definition, by transitivity
and substitutivity of ≈.

Proposition 7. Let t̄ = (t1, . . . , tn, t1) be a cycle. For any number k, the
sequence s̄ = (t1+k, . . . , tn+k, t1+k), with ti := ti−n if i > n, is a cycle.

Proof. Let (C1, . . . , Cn) be the sequence of clauses forming t̄. It is easy
to check that s̄ is a cycle formed by (C1+k, . . . , Cn+k) with Ci := Ci−n if
i > n, as conditions of Definition 14 are invariant by circular permutation
if t1 = tn+1.

Definition 15. A chain (t1, . . . , tn+1) built on a sequence (C1, . . . , Cn) is
an extension of an acyclic chain (s1, . . . , sm+1) if n ≥ m, the latter chain
is built on (C1, . . . , Cm), and the same (oriented) literals and positions are
considered in each clause Ci in both chains.

Proposition 8. Let s̄ be a chain of constructor context Γ[•]p and of
mgu σ, and let t̄ be an extension of s̄. Then the mgu of t̄ is of the form
σθ, t̄ is of the form (s̄θ, ū), and the constructor context of t̄ is of the form
Γθ[∆[•]q]p.

Proof. It is clear that the unification problem associated with s̄ (as defined
in Definition 14, condition 2) is included into that of t̄. Hence the mgu
of t̄ is an instance of that of s̄. Then the proof follows immediately from
the definitions. The case where ū is empty occurs when s̄ = t̄, or when
m = n and t̄ is a cycle (i.e., t̄ is built on the same clauses as s̄, but it
satisfies condition 2(b) of Definition 14 instead of 2(a)).

Since chains can be arbitrarily long, we need to impose some additional
conditions to prune them and ensure that the rules are finitely branching.
Let Keep be a property of chains that fulfills the following requirements:

(i) if a chain t̄ does not satisfy Keep, no extension of t̄ satisfies Keep;

(ii) for every finite clause set N , the set of chains built on a sequence
of renamings of clauses in N and satisfying Keep is finite;

(iii) for every cycle (t1, . . . , tn, t1), there exists a chain (s1, . . . , sm) with
m 6 n that satisfies Keep and such that for some k, the cycle
(t1+k, . . . , tn+k, t1+k) (with ti := ti−n if i > n) is an extension of
(s1, . . . , sm).
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For example, Keep can be defined as the set of chains built on clauses Ci
that are pairwise distinct modulo renaming and such that C1 is the most
recently processed clause. This is the definition we use in our description
of the extended saturation loop (Section 6.6) and in the implementation
in Vampire.

Remark 8. Condition (i) is essential in practice, to ensure that the chains
can be incrementally constructed in an efficient way, because it ensures
that the construction can be stopped when a prefix not satisfying Keep
is obtained. Condition (ii) is not used in the following, but it ensures that
the rule is finitely branching. Condition (iii) is essential for completeness.

Definition 16. A chain of length n is eligible if it is variable-ended and
n = 1, or if it is not variable-ended, it satisfies Keep, and either it is a
cycle or there exists an extension of length n + 1 that does not satisfy
Keep.

Remark 9. The conditions on eligible chains are the strongest ones pre-
serving completeness, but they are not necessary for soundness. They
may thus freely be relaxed if this yields a more efficient procedure.

The acyclicity rule follows:

C1 · · · Cn AcyclD ∨ E
if there exists a direct, eligible chain (t1, . . . , tn+1) built on (C1, . . . , Cn)

under condition D and either t1 = tn+1 and E = ∅ or t1 6= tn+1 and
E = ¬ sub(t1, tn+1)

Intuitively, the existence of the chain guarantees (if D is false) that
there exists a nonempty constructor context Γ[•]p such that t1 ≈ Γ[tn+1]p
holds. If t1 = tn+1, this contradicts acyclicity. Otherwise, we deduce
that t1 cannot occur at a constructor position inside the constructor term
corresponding to tn+1; hence sub(t1, tn+1) is false.

Since the interpretation of sub is not completely axiomatized, the Acycl
rule is not sound in general, in the sense that the derived clauses are not
logical consequences of the premises, even if the considered interpretation
satisfies condition Acy. However, it is sound if one restricts oneself to
interpretations that are sub-minimal. By Lemma 11, we know that this
restriction does not involve any loss of generality, because a sub-minimal
model exists for every satisfiable clause set (with no occurrences of sub).

Lemma 19 (Soundness of Acycl). Let N be a clause set, and let I be a
sub-minimal model of N satisfying Acy. If C is derived from N by Acycl,
then I |= C.
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Proof. Let η be a valuation such that I, η 6|= D ∨ E (with the notations
of the rule). By Proposition 6, we have I, η |= t1 ≈ Γ[tn+1]p for some
nonempty constructor context. If t1 = tn+1, this yields an immediate
contradiction with the hypothesis that I satisfies Acy. Otherwise, we
must have E = ¬ sub(t1, tn+1), hence I, η |= sub(t1, tn+1). Because I is
sub-minimal, this entails that there exists a constructor context ∆[•]q
such that I, η |= ∃z̄. tn+1 ≈ ∆[t1]q; thus I, η |= ∃z̄. tn+1 ≈ ∆[Γ[tn+1]p]q.
Again, this contradicts the hypothesis that I satisfies Acy.

6.4.8 Uniqueness of Fixpoints

The uniqueness rule also depends on the notion of chain:

C1 · · · Cn Uniq
D ∨

(∨
p∈P u|p 6≈ app(sp, t1)

)
∨ u′ 6≈ z ∨ z ≈ t1

if there exists an eligible chain (t1, . . . , tn+1) of constructor context Γ[•]q
built on (C1, . . . , Cn) under condition D and the following requirements
are met:

1. u = Γ[tn+1]q;

2. P is the set of prefix-minimal positions p of some type τ ∼ type(t1)

in u with p 6< q;

3. for every p ∈ P , sp is a fresh variable of type υ τ , where υ, τ are
the types of u|p and t1, respectively;

4. u′ is obtained from u by replacing all terms at a position p ∈ P by
app(sp, z).

Intuitively, the existence of the chain ensures (if D is false) that t1 ≈
Γ[tn+1]q. If t1 = tn+1, we could derive y 6≈ Γ[y]q ∨ y ≈ t1 by uniqueness.
However, this would not be sufficient for completeness. First, t1 may be
distinct from tn+1, but we may have tn+1 = ∆[t1]Q, for some constructor
context ∆, in which case we should derive y 6≈ Γ[∆[y]Q]q ∨ y ≈ t1 instead.
Second, t1 may also occur at other positions in Γ (not <-comparable with
q). To capture all these cases using a finitely branching rule (i.e., without
having to “guess” constructor contexts), we introduce new variables sp
whose purpose is to denote the context Γp such that Γp[t1] = u|p. (If t1
does not occur inside u|p, then Γp is constant.)

Example 5. From the clause a ≈ c(b, x), using the chain (a, x), with the
constructor context c(b, •), we derive

b 6≈ app(x1, a) ∨ x 6≈ app(x2, a) ∨ z 6≈ c(app(x1, z), app(x2, z)) ∨ z ≈ a
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Then u = c(b, x) and P = {1, 2}.
From the clauses a ≈ c(b, a) and b ≈ d(a, a), using the chain (a, b, a),

with the constructor context c(d(a, •), a), we derive

a 6≈ app(x1.1, a) ∨ a 6≈ app(x1.2, a) ∨ a 6≈ app(x2, a)

∨ z 6≈ c(c(app(x1.1, z), app(x1.2, z)), app(x2, z)) ∨ z ≈ a

In this case, u = c(d(a, a), x) and P = {1.1, 1.2, 2}.

Lemma 20 (Soundness of Uniq). Let N be a clause set, and let I be a
model of N ∪ {App,Hole} satisfying FP. If C is derived from N by Uniq,
then I |= C.

Proof. Note that since I satisfies FP, necessarily I |= Uniq. Let η be
a valuation. By Proposition 6, we have I, η |= D ∨ t1 ≈ u. Let u be
the term obtained from u by replacing each constructor c by c τ and
each term at a position p ∈ P by sp. It is straightforward to verify (by
induction on u) that App |= app( u , z) ≈ u′ and that

App |=
(∧

p∈P
u|p ≈ app(sp, t1)

)
=⇒ u ≈ app( u , t1)

Consequently, I, η |= D ∨
∨
p∈P u|p 6≈ app(sp, t1) ∨ t1 ≈ app( u , t1). Fur-

thermore, we have Hole |= u 6≈ hole, because by definition of chains Γ[•]P
is not empty. Since

Uniq |= u ≈ hole ∨ t1 6≈ app( u , t1) ∨ z 6≈ app( u , z) ∨ z ≈ t1

we deduce that

I, η |= D ∨
∨
p∈P

u|p 6≈ app(sp, t1) ∨ u′ 6≈ z ∨ z ≈ t1

We also introduce the following optional simplification rule:

Γn[· · · [Γ1[s′]P ] · · · ]P ≈ s ∨ C
Compr

(Γ1[s]P ≈ s ∨ C)σ

where s and s′ are terms of the same type τ ∈ Tcoind and P is a nonempty
set of constructor positions in Γi, for i ∈ [1, n], such that ε 6∈ P , and
σ = mgu{s ?

= s′, Γ1
?
= · · · ?

= Γn}.

Proposition 9 (Soundness of Compr). Let N be a clause set, and let I
be a model of N satisfying FP. If D is derived from N by Compr, then
I |= D.
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Proof. Let D = (Γ1[s]P ≈ s ∨ C)σ, and let η be a valuation such that
I, η 6|= Cσ. Since I |= N , we have I, η |= (Γn[· · · [Γ1[s′]P ] · · · ]P ≈ s)σ, i.e.,
I, η |= (Γn[· · · [Γ1[s]P ] · · · ]P ≈ s)σ. Then, since I satisfies FP (existence
of fixpoints), I, η |= ∃x. x ≈ (Γ1σ)[x]P ; thus there exists an extension
η′ of η such that I, η′ |= x ≈ (Γ1σ)[x]P for some fresh variable x. Then,
since Γ1σ = · · · = Γnσ, we have I, η′ |= x ≈ Γn[· · · [Γ1[x]P ] · · · ]P , and
since I satisfies FP (uniqueness) we deduce that I, η′ |= sσ ≈ x thus
I, η |= (Γ1[s]P ≈ s)σ.

6.5 Refutational Completeness

We establish the refutational completeness of the calculus presented in
Section 6.4. This result ensures that the axioms for distinctness, injec-
tivity, and acyclicity (NSub) may be omitted. The axiom Uniq may also
be omitted in some cases, formally defined below. The axiom Sub is still
needed since it is used in the completeness proof for Acycl.

If N 63 � is a clause set saturated under SP, then RN denotes the
set of rewrite rules constructed as usual from N and →RN

denotes the
(one-step) reduction relation. We refer to the literature [6, 99] for details
about the construction of RN . The notationMN denotes the model of
N defined by the congruence ∗←→RN

on ground terms.
We first establish some results about the form of the rules in RN .

Proposition 10. Let N be a clause set saturated under SP and Inf.
Let u ≈ v ∨ C ∈ N , and let θ be a substitution such that uθ � vθ,
(u ≈ v)θ � Cθ, andMN 6|= Cθ. If type(u) ∈ Tind ∪ Tcoind, then u is not a
variable.

Proof. If u is a variable, then due to the order conditions u cannot occur
in the scope of a function symbol in C or v, or in a negative literal of
C, hence it occurs only at root positions in equations. Consequently,
u ≈ v ∨ C is of the form

∨n
i=1 u ≈ ti ∨ C′, where u does not occur in

C′ or t1, . . . , tn (with v ∈ {t1, . . . , tn}). Then Inf applies and derives C′.
Since N is saturated under Inf, we deduce that MN |= C′ |= Cθ, which
contradicts the hypotheses.

Corollary 4.1. Let N be a clause set saturated under SP and Inf. For
every rule c(t̄)→RN

s in RN , where c is a constructor, s is RN -irreducible.

Proof. Assume that s is reducible in RN . This means that there exist a
subterm u at position p of s and a rule u →RN

v in RN . Consequently,
there exist two clauses C = t′ ≈ s′ ∨ C′ and D = u′ ≈ v′ ∨ D′, and two
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substitutions σ and θ such that t′θ = c(t̄), u′σ = u, s′θ = s, v′σ = v,
and MN 6|= C′θ ∨ D′σ. By definition of RN , xθ is RN -irreducible, for
every x ∈ dom(θ), consequently p is a non-variable position in s′. By
Proposition 10, t′ is not a variable, hence the head symbol of t′ is c.
Therefore, superposition into s′ is allowed in the relaxed calculus, and the
inference yields a clause (t′ ≈ s′[v′]p∨C′∨D′)η, where η = mgu{s′|p ?

= u′}.
Since θσ is an instance of η, we deduce that there exist ground clauses
E1, . . . , En that are instances of clauses in N such that c(t̄) ≈ s[v]p ∨
C′θ ∨ D′σ � Ei for i ∈ [1, n] and E1, . . . , En |= c(t̄) ≈ s[v]p ∨ C′θ ∨ D′σ.
Let R′N be the rules added before c(t̄) →RN

s in RN and let M′ be
the corresponding interpretation. By construction of the model, c(t̄) is
R′N -irreducible and M′ 6|= C′θ ∨ D′σ, moreover, since Cθ � Ei, we have
M′ |= E1, . . . , En thusM′ |= c(t̄) ≈ s[v]p, a contradiction.

Lemma 21 (Infiniteness). Let N be a clause set saturated under SP and
Inf. If � /∈ N , thenMN satisfies Inf .

Proof. Let τ ∈ Tind ∪ Tcoind. We assume, without loss of generality, that
the model is constructed over a signature that contains at least two (non-
constructor) symbols a : τ and f : τ → τ , not occurring in N . By
Proposition 10, all the rules in RN are of the form g(t̄)→RN

s, where g

occurs in N . Thus fn(a) is RN -irreducible for every natural number n,
and the domain of τ is infinite.

Lemma 22 (Distinctness). Let N be a clause set saturated under SP,
Dist1, Dist2, and Inf. For all ground terms a = c(ā) and b = d(b̄) such
that c ./ d, we have a 6 ∗←→RN

b.

Proof. Assume a ∗←→RN
b. Without loss of generality, we can assume that

a � b and that ā and b̄ are RN -irreducible. The proof proceeds by case
analysis over the reducibility of a and b.

• a is irreducible. Since a � b, it cannot be the case that a ∗←→RN
b.

• b is irreducible and a
+−→RN

b. Then RN contains a rule a →RN
a′,

with a′ →∗RN
b. By Corollary 4.1, we know that a′ is RN -irreducible,

therefore we must have a′ = b. There exist a clause C = u ≈ v ∨ C′
and a substitution θ, with MN 6|= C′θ, uθ = a, and vθ = b. By
Proposition 10, u cannot be a variable, hence its head symbol is c.
Consequently, there is an inference Dist1 taking C for premise, and
deriving a clause C′σ, with σ = mgu{v ?

= d(x̄)}. It is clear that θ is an
instance of σ (more exactly of the restriction of σ to the variables of
C). ThusMN |= C′σ |= C′θ, leading to a contradiction.
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• There exists a term c such that a +−→RN
c and b

+−→RN
c. Then RN

must contain two rules of the form a → a′ and b → b′, corresponding
to two clauses C and D of the form u ≈ u′ ∨ C′ and v ≈ v′ ∨ D′ with
MN 6|= Cθ ∨ C′θ′, a′

∗−→RN
c, b′ ∗−→RN

c, uθ = a, vθ′ = b, u′θ = a′,
and v′θ′ = b′. By Proposition 10, u and v cannot be variables, hence
there head symbols must be c and d respectively. By Corollary 4.1,
a′ and b′ are RN -irreducible, and therefore a′ = b′ = c. The rule
Dist2 can be applied to clauses C and D, yielding a clause (C ∨ C′)σ,
where σ = mgu{u′ ?

= v′}. Then θθ′ is an instance of σ; thus MN |=
(C ∨ C′)σ |= Cθ ∨ C′θ′, a contradiction.

Lemma 23 (Injectivity). Let N be a clause set saturated under SP, Inf,
Inj1, and Inj2. For all ground terms a = c(a1, . . . , an) and b = c(b1, . . . , bn)

with c ∈ Ctr inj and such that ai 6
∗←→RN

bi for some i ∈ [1, n], we have
a 6 ∗←→RN

b.

Proof. Assume a ∗←→RN
b. Without loss of generality, we can assume that

a � b and that a1, . . . , an, b1, . . . , bn are RN -irreducible. The proof is
similar to that of Lemma 22.

• a is irreducible. Since a � b, it cannot be the case that a ∗←→RN
b.

• b is irreducible and a +−→RN
b. Then RN contains a rule a→RN

a′, with
a′ →∗RN

b. By Corollary 4.1, we know that a′ is irreducible, therefore we
must have a′ = b. There exists a clause C = u ≈ v∨C′, withMN 6|= C′θ,
uθ = a, and vθ = b. By Proposition 10, u cannot be a variable; thus u
is of the form c(u1, . . . , un). Then there is an inference Dist1 taking C
for premise, and deriving a clause (ui ≈ xi ∨ C′)σ, with σ is an mgu of
v and d(x1, . . . , xn). The substitution {xi 7→ bi}θ is an instance of σ;
thusMN |= (ui ≈ xi ∨C′)σ |= (ui ≈ xi ∨C′){xi 7→ bi}θ = ai ≈ bi ∨C′θ,
leading to a contradiction.

• There exists a term c such that a +−→RN
c and b

+−→RN
c. Then RN

must contain two rules of the form a → a′ and b → b′, corresponding
to two clauses C and D of the form u ≈ u′ ∨ C′ and v ≈ v′ ∨ D′ with
MN 6|= Cθ ∨ C′θ′, a′

∗−→RN
c, b′ ∗−→RN

c, uθ = a, vθ′ = b, u′θ = a′, and
v′θ′ = b′. By Proposition 10, u and v cannot be variables, hence they
must be of the form c(u1, . . . , un) and c(v1, . . . , vn) respectively. By
Corollary 4.1, a′ and b′ are RN -irreducible, and therefore a′ = b′ = c.
The rule Dist2 can be applied to clauses C and D, yielding a clause
of the form (ui ≈ vi ∨ C ∨ C′)σ, where θθ′ is an instance of σ. Thus
MN |= (ui ≈ vi ∨ C ∨ C′)σ |= ai ≈ bi ∨ Cθ ∨ C′θ′, a contradiction.
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The completeness proof for acyclicity requires further definitions and
results.

Definition 17. Let I be an interpretation and t be a term. A constructor
context Γ[•]p is a minimal cyclicity witness for t and I if it is of the same
type as t, p is a position of the same type as t in Γ, I |= t ≈ Γ[t]p, and
|q| ≥ |p| for every position q 6= ε and constructor context ∆[•]q such that
I |= t ≈ ∆[t]q.

Proposition 11. Let (t1, . . . , tn, t1) be a cycle of constructor context
Γ[•]p for a clause set N under condition D. If I |= N ∪ {¬Dσ}, and
Γ[•]p is a minimal cyclicity witness for t1σ and I, then (t1, . . . , tn, t1) is
direct.

Proof. Assume that (t1, . . . , tn, t1) is not direct. By definition, there
exist i, j ∈ [1, n] such that i < j and ti = tj . By Proposition 6, since
I 6|= Dσ we have I |= (t1 ≈ Γ[t1]p1.··· .pn)σ for some positions p1, . . . , pn,
with p = p1. · · · .pn. Furthermore, again by Proposition 6, we also have
I |= (t1 ≈ Γi[ti]p1··· .pi−1

)σ and I |= (tj ≈ Γj [tn]pj ··· .pn−1
)σ, for some

constructor contexts Γi and Γj .
Since ti = tj , we deduce: I |= (t1 ≈ Γi[Γj [t1]pj .··· .pn ]p1.··· .pi−1)σ, which

entails that Γσ is not a minimal cyclicity witness for t1σ, because, since
i < j, necessarily 0 < |p1. · · · .pi−1.pj . · · · .pn| < |p1. · · · .pn|.

Lemma 24. Let t : τ and s : υ be ground terms with τ ∼ υ. Let Γ[•]p
be a ground constructor context of type τ , where p is a position of type
υ in Γ. Let N be a clause set saturated under SP and Inf. Assume
that t, s, and Γ|p′ are RN -irreducible, for every position p′ 66 p. If
MN |= Γ[s]p ≈ t, then RN contains n rules Γi[ai+1]pi →RN

ai, for
i ∈ [1, n], with Γ[s]p = Γ0[Γ1[· · · [Γn[an+1]pn ] · · · ]p1 ]p0 , p0.p1. · · · .pn = p,
an+1 = s, and t = Γ0[a1]p0 .

Proof. Let t′ = Γ[s]p. SinceMN |= t′ ≈ t and t is RN -irreducible, we have
t′ →k

RN
t, for some natural number k ≥ 0. The proof is by induction on k.

It is immediate if k = 0, since in this case t = t′, by letting n = 0, Γ0 = Γ

and p0 = p (with a1 = s). Otherwise, since Γ|p′ is RN -irreducible, for
p′ 66 p, the first rule in the→RN

-derivation from t′ to t must be applied at
some position p′ 6 p. We denote by pn the position such that p = p′.pn.
Thus there exists a rule ∆[s]pn →RN

b such that t′|p′ = ∆[s]pn , and
t′[b]p′ →k−1

RN
t. Since Γ is a constructor context, the head symbol of ∆ is a

constructor, and by Corollary 4.1, bmust be RN -irreducible. By the induc-
tion hypothesis, since t′[b]p′ →k−1

RN
t, there exist rules Γi[ai+1]pi →RN

ai,
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for i ∈ [1, n− 1], with t′[b]p′ = Γ0[· · · [Γn−1[an]pn−1
] · · · ]p0 , p0. · · · .pn−1 =

p′, an = b and t = Γ0[a1]p0 . By letting Γn = ∆ and an+1 = s, we get
t′ = Γ0[· · · [Γn−1[Γn[an+1]pn ]pn−1 ] · · · ]p0 with p0. · · · .pn−1.pn = p.

Lemma 25 (Acyclicity). If Sub ⊆ N and N 63 � is saturated under SP,
Acycl, and Inf, thenMN satisfies condition Acy.

Proof. Assume that there exist a ground term t of some type τ ∈ Tind and
a ground constructor context Γ[•]p such thatMN |= t ≈ Γ[t]p, with p 6= ε.
W.l.o.g., we may assume that t is a minimal term (with respect to �) of
some type in Tind such that a context Γ satisfying the condition above
exists, that Γ is a minimal cyclicity witness for t andMN and that Γ|p′
is RN -irreducible for every p′ 66 p. Since t is minimal, t is RN -irreducible.
Let t′ = Γ[t]p.

By Lemma 24, RN contains n rules Γi[ai+1]pi →RN
ai, for i ∈ [1, n],

such that t′ = Γ0[· · · [Γn[an+1]pn ] · · · ]p0 , p0. · · · .pn = p, an+1 = t and
t = Γ0[a1]p0 . If p0 6= ε, then t � a1, and

MN |= a1 ≈ Γ1[· · · [Γn[Γ0[a1]p0 ]]pn ] · · · ]p0

which contradicts the minimality of t, because type(a1) ∼ type(t) ∈ Tind.
Thus we have p0 = ε and Γ0 is empty.

By definition of RN , there exist n clauses Ci = ui ≈ si ∨ C′i and
substitutions θi (for i ∈ [1, n]) such that, for every i ∈ [1, n], uiθi � siθi,
(ui ≈ si)θi � C′iθi, uiθi = Γi[ai+1]pi , siθi = ai and MN 6|= C′iθi. Let qi
be the maximal prefix of pi that is a position in ui. We distinguish two
cases.

• If there exists i ∈ [1, n] such that ui|qi is a variable x, then Ci must be
of the form ui[x]qi ≈ si ∨ C′i. By Proposition 10, ui is not a variable,
hence qi 6= ε. Consequently, the Acycl rule applies on Ci (using a trivial
chain (si, x) of length 1 that is eligible since it ends with a variable) and
derives the clause: C′i∨¬ sub(si, x). SinceMN is saturated under Acycl,
this entails thatMN |= C′i∨¬ sub(si, x), henceMN 6|= sub(si, x)θi. Let
q′i be the position such that qi.q′i = pi. We have x = ui|qi . Thus:

xθi
∗←→RN

Γi|qi [ai+1]q′i∗←→RN
Γi|qi [Γi+1[· · · [Γn[an+1]pn ] · · · ]pi+1 ]q′i∗←→RN
Γi|qi [Γi+1[· · · [Γn[t]pn ] · · · ]pi+1 ]q′i∗←→RN
Γi|qi [Γi+1[· · · [Γi−1[Γ1[· · · [Γi−1[ai]pi−1 ] · · · ]p1 ]pn−1 ] · · · ]pi+1 ]q′i

By Proposition 2, this entails thatMN |= sub(ai, xθi), that is,MN |=
sub(si, x)θi, a contradiction.
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• Otherwise, we must have pi = qi, for all i ∈ [1, n]. Let s′i+1 = ui|pi ,
for i ∈ [1, n]. The substitution θ1 . . . θn is a solution of s′n+1

?
= s1 ∧∧n

i=2 s
′
i

?
= si, hence this problem admits an mgu σ, with θ1 . . . θn = ση.

Let (t1, . . . , tn+1) = (s1, . . . , sn+1)σ. It is easy to check that all the con-
ditions of Definition 14 are satisfied, hence (t1, . . . , tn+1) is a cycle. By
definition of Keep, there exists k such that (t1+k, . . . , tn+k, t1+k) (with
ti := ti−n if i > n) is a cycle, and there exists a chain (b1, . . . , bm+1)

satisfying Keep such that (t1+k, . . . , tn+k, t1+k) is an extension of
(b1, . . . , bm+1). We assume that (b1, . . . , bm+1) is the longest chain with
this property. By definition, this entails that (b1, . . . , bm+1) is eligible
(indeed, either m = n and the chain is a cycle, or (b1, . . . , bm+1) 6=
(t1+k, . . . , tn+k, t1+k) and there exists an extension of length m+ 2 of
(b1, . . . , bm+1) that does not satisfied Keep). Furthermore, since Γ is
a minimal cyclicity witness for t and MN , (t1, . . . , tn+1) is direct by
Proposition 11, hence (b1, . . . , bm+1) is also direct. Consequently, the
Acycl rule applies on the clauses C1+k, . . . , Cm+k, yielding a clause of
the form C′1+kθ ∨ · · · ∨ C′m+kθ ∨ E , where the subclause E is either �
or ¬ sub(bm+1, b1). By Proposition 8, there exists σ′ such that σ = θσ′

and ti+k = biσ
′ (for i = 1, . . . ,m). We have C′iθσ′η = C′iση = Ciθi,

hence MN 6|= C′1+kθσ
′η ∨ · · · ∨ C′m+kθσ

′η. Since N is saturated un-
der Acycl, MN |= C′1+kθ ∨ · · · ∨ C′m+kθ ∨ E , hence we deduce that
MN |= Eσ′η. Thus MN 6|= sub(bm+1, b1)σ′η. By Proposition 6,
there exist some constructor context ∆ and position r 6= ε such that
MN |= (tm+1+k ≈ ∆[t1+k]r)η, i.e., MN |= (bm+1 ≈ ∆[b1]r)σ

′η. This
contradicts the fact thatMN 6|= sub(bm+1, b1)σ′η.

Remark 10. The Inf rule is needed for completeness. For example, it
is clear that the clause x ≈ a ∨ x ≈ b contradicts acyclicity, but no
contradiction can be derived without using Inf. The relaxation of the
application conditions of Sup is also essential. Consider the clause set
N = {a1 ≈ c(a2), a2 ≈ a3, a3 ≈ c(a1)}, with c(. . . ) � ai+1 � ai. It is clear
that N is saturated without the relaxation, and N contradicts acyclicity,
since N |= a1 ≈ c(c(a1)). With the relaxation, Sup derives the clause
a2 ≈ c(a1); then Acycl exploits the cycle (a1, a2, a1) to derive �.

For the Uniq rule, we provide a restricted completeness result, under
the assumption that the considered constructor context contains at most
one occurrence of •.

Lemma 26 (Uniqueness of Fixpoints). If App ⊆ N and N 63 � is
saturated under SP, Uniq, and Inf, thenMN |= x ≈ Γ[x]r ∧ y ≈ Γ[y]r ⇒
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x ≈ y for every constructor context of the form Γ[•]r of type τ ∈ Tcoind,
where r is a nonempty position of type τ in Γ.

Proof. The proof is similar to that of Lemma 25. Let t be a ground term
such that there exist a nonempty constructor context Γ[•]r and a ground
term s of type τ with MN |= t ≈ Γ[t]r ∧ s ≈ Γ[s]r ∧ t 6≈ s. W.l.o.g.,
we assume that t is a minimal (with respect to �) term such that Γ

and s exist, and that Γ|p is irreducible, for every p 66 r. By Lemma
24, since MN |= t ≈ Γ[t]r, RN contains n rules Γi[ai+1]pi →RN

ai, for
i ∈ [1, n], with Γ[t]r = Γ0[· · · [Γn[an+1]pn ] · · · ]p0 , p0. · · · .pn = r, an+1 = t

and t = Γ0[a1]p0 .
Assume first that p0 6= ε. We have:

MN |= a1 ≈ Γ1[· · · [Γn[Γ0[a1]p0 ] . . . ]pn ] · · · ]p0

Moreover, fromMN |= s ≈ Γ[s]r, we deduce:

MN |= Γ1[· · · [Γn[s]pn ] · · · ]p1 ≈ Γ1[· · · [Γn[Γ[s]r]pn ] · · · ]p1

i.e.:

MN |= Γ1[· · · [Γn[s]pn ] · · · ]p1 ≈ Γ1[· · · [Γn[Γ0[· · · [Γn[s]pn ] · · · ]p0 ]pn ] · · · ]p1

thus by letting s′ = Γ1[· · · [Γn[s]pn ] · · · ]p1 , we get

MN |= s′ ≈ Γ1[· · · [Γn−1[Γ0[s′]p0 ]pn−1
] · · · ]p0

By minimality of t, since t � a1 we deduce that MN |= a1 ≈ s′, hence
thatMN |= Γ0[a1]p0 ≈ Γ0[s′]p0 , i.e.,MN |= t ≈ s, which contradicts our
assumption.

Thus p0 = ε, and Γ0 is empty. By definition of RN , there exist clauses
Ci = ui ≈ si ∨ C′i and substitutions θi (for i ∈ [1, n]) such that, for every
i ∈ [1, n], uiθi � siθi, (ui ≈ si)θi � C′iθi, uiθi = Γi[ai+1]pi , siθi = ai and
MN 6|= C′iθi. Let qi be the maximal prefix of pi that is a position in ui.
We distinguish two cases.

• If there exists i ∈ [1, n] such that ui|qi is a variable y, then Ci must be
of the form ui[y]qi ≈ si ∨ C′i. We assume, w.l.o.g., that i is the minimal
number having this property. By Proposition 10, ui is not a variable,
hence qi 6= ε. Consequently, the Uniq rule applies on Ci and derives the
clause C′i ∨ D, with

D =
(∨
p∈P

ui|p 6≈ app(sp, si)
)
∨ u′ 6≈ z ∨ z ≈ si
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where P is the set of prefix-minimal positions p of some type τ ∼
type(si) in ui[y]qi such that p 6< qi. Since MN is saturated under
Acycl, this entails that MN |= C′i ∨ D, hence MN |= Dθi. Γ can be
written on the form

Γ = ∆[∆′[•]pi.··· .pn ]p1.··· .pi−1

Every position p ∈ P is a position in Γi, since uiθi = Γi[ai+1]pi . Thus
for every p ∈ P , p1. · · · .pi−1.p is a position in Γ. Moreover, by Propo-
sition 4, there exists a term s′p such that App |= ∀x. app(s′p, x) ≈
Γ|p1.··· .pi−1.p[∆[x]p1.··· .pi−1

]Qp
, where Qp denotes the set of positions

of • in Γ|p1.··· .pi−1.p (this set is either empty, if p 6= qi, or a singleton
{q′i.pi+1. · · · .pn} with qi.q′i = pi if p = qi). Let η be a substitution map-
ping each variable sp to s′p and mapping z to ∆′[s]pi.··· .pn . By definition
of η, sinceMN |= App, we have:

MN |= (app(sp, si) ≈ Γ|p1.··· .pi−1.p[∆[si]p1.··· .pi−1
]Qp

)η

Furthermore,MN |= siθi ≈ ∆′[t]pi.··· .pn−1 henceMN |= (app(sp, si) ≈
Γ|p1.··· .pi−1.p[∆[∆′[t]pi.··· .pn ]p1.··· .pi−1

]Qp
)θiη Thus we haveMN |= (app(sp, si) ≈

Γ|p1.··· .pi−1.p[t]Qp
)θiη which entails thatMN |= (app(sp, si) ≈ Γ[t]r|p1.··· .pi−1.p)θiη.

Therefore MN |= (ui|p ≈ app(sp, si))θiη for every p ∈ P . Similarly,
if p 6= qi, then App |= (app(sp, z) ≈ ui|p)θiη, thus MN |= (u′ ≈
ui[app(sqi , z)]qi)θiη, hence:

MN |= (u′ ≈ ui[Γ|p1.··· .pi−1.qi [∆[∆′[s]pi.··· .pn ]p1.··· .pi−1
]Qqi

]qi)θiη

and therefore MN |= (u′ ≈ ui[Γ|p1.··· .pi−1.qi [s]Qqi
]qi)θiη; thus MN |=

(u′ ≈ z)θiη. BecauseMN |= Dθi, we deduce thatMN |= (z ≈ si)θiη,
and therefore MN |= (∆[z]p1.··· .pi−1

≈ ∆[si]p1.··· .pi−1
)θiη. Conse-

quently,MN |= s ≈ t.

• Otherwise, we must have pi = qi, for i ∈ [1, n]. Let s′i+1 = ui|pi , for i ∈
[1, n]. The substitution θ1 . . . θn is a solution of s′n+1

?
= s1∧

∧n
i=2 s

′
i

?
= si,

hence this problem admits an mgu σ, with θ1 . . . θn = ση. It is easy to
check that the sequence (t1, . . . , tn+1) = (s1, . . . , sn+1)σ is a cycle; thus
there exists a k such that the sequence (t1+k, . . . , tn+k, t1+k) (with ti :=

ti−n if i > n) is a cycle, and there exists a chain (b1, . . . , bm+1) satisfying
Keep such that (t1+k, . . . , tn+k, t1+k) is an extension of (b1, . . . , bm+1).
We assume that (b1, . . . , bm+1) is the longest chain having this property,
which entails that (b1, . . . , bm+1) is eligible. The Uniq rule applies on
the clauses C1+k, . . . , Cm+k, yielding a clause of the form C′1+kθ ∨ · · · ∨
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C′m+kθ∨E , where E =
(∨

p∈P u|p 6≈ app(sp, b1)
)
∨u′ 6≈ z∨z ≈ b1 and P

is the set of prefix-minimal positions p of some type τ ∼ type(s1+k) in
the constructor context u = Γ1+k[. . . [Γm+k[•]pm+k

. . . ]p1+k
] such that

p 6< p1+k. · · · .pm+k.

By Proposition 8, there exists a substitution σ′ such that σ = θσ′ and
ti+k = biσ

′ for i ∈ [1,m + 1]. We have C′iθσ′η = C′iση = C′iθi, hence
MN 6|= C′1+kθσ

′η ∨ · · · ∨ C′m+kθσ
′η. Since N is saturated under Uniq,

MN |= C′1+kθ ∨ · · · ∨ C′m+kθ ∨ E , hence we deduce thatMN |= Eσ′η.

It is clear that there exist constructor contexts ∆ and ∆′[•]r′ such that:

Γ[Γ[•]r]r|p1.··· .p1+k
= ∆[∆′[•]r′ ]p2+k.··· .pn+k

By Proposition 4, for every position p ∈ P , there exists a term s′p
such that App |= ∀x. app(s′p, x) ≈ Γ|p1.··· .pk.p[∆[x]p2+k.··· .pn+k

]Qp , where
Qp denotes the set of positions of • in Γ|p1.··· .pk.p (as in the previ-
ous case, this set contains at most one element). Let γ be a sub-
stitution mapping each variable sp to s′p and mapping z to ∆′[s]r′ .
As in the previous case, it is easy to check that MN |= (u|p ≈
app(sp, b1))σ′ηγ for every p ∈ P , andMN |= (u′ ≈ z)σ′ηγ; thus we have
MN |= (z ≈ b1)σ′ηγ, whenceMN |= ∆′[s]r′σ

′η ≈ b1σ
′η, thusMN |=

Γ[∆[∆′[s]r′σ
′η]p2+k.··· .pn+k

]p1.··· .p1+k
≈ Γ[∆[b1]p2+k.··· .pn+k

]p1.··· .p1+k
σ′η

and thereforeMN |= s ≈ t.

Definition 18. A signature is coinductively nonbranching if for every
constructor c : τ1× · · · × τn → τ such that τ ∈ Tcoind, there exists at most
one i ∈ [1, n] such that τi ∼ τ .

For example, the signature is coinductively nonbranching for infinite
streams and possibly infinite lists, but not for infinite binary trees.

Proposition 12. Let t be a term of type τ ∈ Tcoind and p1, p2 be two posi-
tions in t of types τ1 and τ2, respectively. If the signature is coinductively
nonbranching, and if τ1 ∼ τ2 ∼ τ , then p1 6 p2 or p2 6 p1.

Proof. Let p be the greatest common prefix of p1 and p2. If p1 66 p2

and p2 66 p1, then necessarily p 6= p1, p2; thus pi = p.ji.p
′
i, where j1

and j2 are distinct integers. Then t|p is of the form c(t1, . . . , tn), where
c is a constructor, j1, j2 ∈ [1, n], τi B∗ type(tji) and type(tji) B

∗ τ

thus type(tj1) ∼ type(tj2) ∼ type(t|p), with contradicts the fact that the
signature is coinductively nonbranching.
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Corollary 4.2 (Fixpoints). Assume that the signature is coinductively
nonbranching. If Cycl ∪ App ⊆ N and N 63 � is saturated under SP,
Uniq, and Inf, thenMN satisfies condition FP.

Proof. Let Γ[•]P be a nonempty constructor context of type τ ∈ Tcoind,
where P is a set of positions of type τ in Γ. By the hypothesis of the
corollary, we may assume, by Proposition 12, that P is a singleton {r}.
Since MN |= Cycl, we have MN |= ∃x. x ≈ Γ[x]r. By Lemma 26,
MN |= x ≈ Γ[x]r ∧ y ≈ Γ[y]r ⇒ x ≈ y.

Example 6. Corollary 4.2 does not hold for arbitrary signatures. The
clause set {a ≈ c(d(a, b)), b ≈ e(d(a, b)), a′ ≈ c(d(a′, b′)), b′ ≈ e(d(a′, b′)),

d(a, b) 6≈ d(a′, b′)} contradicts FP, because d(a, b) and d(a′, b′) are both
solutions of x ≈ d(c(x), e(x)). However, the Uniq rule applies only with
constructor contexts of head symbol c (if the chain starts with a or a′) or
e (if the chain starts with b or b′).

Observe that in the proof of Lemma 26, the variables p ∈ P (with the
notations of the Uniq rule), are always instantiated with a term cst(u|p),
except when p = q. Thus the result holds for this particular instantiation
of the rule, and all terms app(sp, x) with p 6= q may be replaced by u|p
in this case. However, being able to instantiate sp by terms different
from cst(u|p) is useful when contexts with several holes are considered,
although the rule is not complete in this case. Note also that if the
signature is coinductively nonbranching, then necessarily P = {q}, by
Proposition 12.

6.6 Saturation Procedure

The inference rules of the calculus presented in Section 6.4 are all finitely
branching, provided that the eligibility criterion is applied for the Acycl
and Uniq rules. As a result, saturation of a clause set can be carried
out using standard saturation procedures. These generally work by main-
taining a set of passive clauses that initially contains all the clauses to
saturate and a set of active clauses that is initially empty. The algorithm
heuristically chooses a passive clause that becomes the given clause, moves
it to the active clauses, and performs all possible inferences between it
and the active clauses. Conclusions are added to the set of passive clauses,
and the procedure is iterated until � is derived, or until the set of passive
clauses is empty, in which case the set of active clauses is saturated.

To improve search, it is useful to distinguish between simplifying rules
and generating rules. In simplifying rules, at least one of the premises
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is redundant with respect to the conclusion. The Inf rule is simplifying,
as well as the Dist1 and Inj1 rules when the term t is not a variable, and
the Acycl rule when there is only one premise and t1 = tn. Since they
allow the replacement of a clause by another, simplifying rules should be
applied immediately after the generation of a new clause. For the same
reason, they should be applied to all literals (rather than only to maximal
literals) and without any order condition.

In addition to the calculus, we propose the following simplifying rules
to eliminate theory tautologies:

c(s̄) 6≈ d(t̄) ∨ C
Dist−∅

s 6≈ Γ[s] ∨ C
Acycl−

∅

where c ./ d, Γ[•] is a nonempty constructor context, and type(s) ∈ Tind.
Moreover, the following rule applies injectivity of constructors c ∈

Ctr inj to simplify literals:

c(s1, . . . , sn) 6≈ c(t1, . . . , tn) ∨ C
Inj−(∨n

i=1 si 6≈ ti
)
∨ C

The soundness of Inj− follows from c’s being a function symbol, but
since it is also injective, the premise is redundant with respect to the
theory. We conjecture that the addition of these simplification rules
preserves refutational completeness.

If all constructors are free (i.e., Ctr inj = Ctr and c ./ d holds for all
distinct constructors c and d), by applying the above rules eagerly, we
also guarantee that in any literal [¬]s ≈ t in an active clause, at most one
of s or t has a constructor for head symbol, as (dis)equalities between
constructor terms will have been simplified directly after clause generation.
This invariant enables a few optimizations in the implementation of the
generating rules, notably during the detection of chains.

The relaxation of the application conditions of the Sup rule increases
the number of clauses it must generate and hence may be detrimental to
the search. We can reduce the incidence of this scenario by choosing a
term order that considers constructors as smaller than non-constructors.
For path orders, we can choose a symbol precedence � such that f � c

for all non-constructor symbols f and constructors c.
To implement the Acycl and Uniq rules, we must be able to efficiently

detect eligible chains among the set of active clauses. Testing all subsets
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of the active clauses is impractical, and the detection of a chain requires
the computation of an mgu over a set of equations, instead of a single
equation. We present a procedure that takes the given clause C1 as input
and applies the two rules to all subsets of clauses containing C1 and upon
which an eligible chain can be built. There are three cases in which the
rules must be applied: when the chain is a cycle, when it is variable-ended
and has length 1, and when there exists an extension of the chain that
violates Keep. The procedure relies on a data structure that provides a
nextLinks(s′) operation, where s′ is a term. For each literal s ≈ t in an
active clause C such that s is unifiable with s′ under an mgu σ and sσ 6� tσ,
the operation returns the tuple (C, σ, T ), where T is the set of terms under
nonempty constructor positions in t. This operation can be implemented
using term indexing techniques already found in state-of-the-art provers.

The procedure considerGiven(C1) applies the rule Acycl or Uniq to all
subsets of actives clauses that contain the given clause C1 and form an
eligible chain:

Procedure considerGiven(C1) is
for s′2 such that C1 = s1 ≈ Γ[s′2] ∨ D1 do

extendChain(s1, s
′
2, {}, {C1})

Procedure extendChain(s1, s
′
i, θ,Ch) is

if s1θ = s′iθ then
apply rule Acycl or Uniq to chain Ch under mgu θ

else if s′i is a variable then
if |Ch| = 1 then

apply rule Acycl or Uniq to chain Ch under mgu θ
else if exists (Ci, σ, T ) ∈ nextLinks(s′iθ) such that Ci ∈ Ch
then

apply rule Acycl or Uniq to chain Ch under mgu θ
else

for (Ci, σ, T ) ∈ nextLinks(s′iθ) do
for s′i+1 ∈ T do

extendChain(s1, s
′
i+1, σθ,Ch ] {Ci})

6.7 Evaluation

We implemented the calculus presented above in the first-order theo-
rem prover Vampire [84]. Our source code is publicly available.1 The
new rules are added to the existing calculus, which includes other sound

1http://github.com/vprover/vampire/releases/tag/ijcar2018-data
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rules and a sophisticated redundancy elimination mechanism. Vam-
pire can process input files in SMT-LIB [11] format and recognizes the
command declare-datatypes, as well as the nonstandard command
declare-codatatypes. These commands trigger the addition of rele-
vant axioms or the activation of inference rules, according to user-specified
options. This implementation is an extension of previous work done in
Vampire [81] (Chapter 4 of this thesis). The behavior of this older im-
plementation can be replicated by enabling only the simplification rules
of the calculus and adding the axioms Dist, Inj, Exhaust, Sub, and NSub

to the initial clause set.
We evaluated the implementation on 4170 problems that were used

previously by Reynolds and Blanchette [114] to evaluate CVC4. These
were generated by translating Isabelle problems to SMT-LIB using the
Sledgehammer bridge [104]. We also used synthetic problems that exercise
the properties of cyclic values. Both benchmark sets and detailed results
are available online.2

All the experiments in this section were carried out on a cluster on
which each node is equipped with two quad-core Intel processors run-
ning at 2.4GHz, with 24GiB of memory. A 60 s time limit per problem
was enforced. We used a single basic saturation strategy relying on the
DISCOUNT saturation algorithm. The calculus was parameterized by a
Knuth–Bendix term order, unless otherwise noted. This simple approach
provides a homogeneous basis on which to compare the performance of
the different procedures. It typically solves fewer problems than the port-
folio approach commonly used with Vampire and other provers, in which
several different strategies are tried in short time slices.

We first compare the performance of three configurations of the prover
on the Isabelle problems. The first configuration corresponds to the
axiomatic approach presented in Section 6.3: the axioms Dist, Inj, Exhaust,
Sub, NSub, App, Uniq, Cycl, and Hole are added to the set of clauses
to saturate, and only standard inferences rules are used by the prover.
Superposition need not rewrite the nonmaximal side of an equation.

The second configuration implements part of the calculus presented
in Section 6.4. Only the axioms Exhaust, Sub, NSub, App, Uniq, Cycl, and
Hole are added to the clauses, and the rules Dist1, Dist2, Inj1, and Inj2 are
used during the search, in addition to the simplification rules described
in Section 6.6. The side conditions of Sup are also relaxed. The rules
Acycl and Uniq are not used; instead, reasoning on the properties of cyclic
terms is based on axioms.

2http://matryoshka.gforge.inria.fr/pubs/supdata_data.tar.gz
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The third configuration uses all the rules described in Section 6.4.
Only the axioms Sub and App are added, on which the Acycl and Uniq
rules depend, and the axioms Cycl and Exhaust. This configuration is
the only one which does not ensure refutational completeness, since Uniq
is incomplete with respect to the uniqueness of fixpoints for branching
codatatypes.

The first two configurations both solved 1114 problems and the third
one solved 1113 problems; 1116 problems are solved by at least one config-
uration. These homogeneous results do not reveal significant differences
between the approaches. To assess the role of the acyclicity property of
datatypes and the properties of codatatype fixpoints in the benchmarks,
we also tested a system that did not include any axioms and rules related
to these properties. With such an incomplete system, we found that 12
problems could not be solved. This is roughly in line with the results of
Reynolds and Blanchette using CVC4 on the same problems [114]. No
new problems were solved by this configuration, suggesting that reasoning
about properties of cyclic terms does not lead to worse performance even
when these properties are not needed for refutation.

We also tested variants of the last two configurations in which the cal-
culus was parameterized by a lexicographic path order, to assess whether
this term order could improve the performance when used with the re-
laxed superposition rule. These configurations solved a total of 1104
problems, including 5 new problems. This shows that using a different
term order allows the exploration of different parts of the search space,
but the choice of order does not seem to impact the performance of the
relaxed superposition rule.

Since properties of cyclic values are seldom used in the Isabelle bench-
marks, we crafted a set of (refutable) problems to assess the performance
of the rules Acycl and Uniq. For a term s and a nonconstant context Γ[•],
let exchain(s,Γ[•]) denote any sentence

∃s2, . . . sn∀t1, . . . tm. s ≈ Γ1[s2] ∧ · · · ∧ sn ≈ Γn[s],

where t1, . . . , tm all occur in Γ and such that Γ1[. . . [Γn[•]] . . . ] = Γ[•].
The formula ∃s. exchain(s,Γ[•]), where type(s) ∈ Tind, forms an acyclicity
problem. The set of acyclicity problems used in our experiments is denoted
AC. If m = 0, the clausified form of this problem is ground (ACG).
The formula ∃s1, s2. exchain(s1,Γ[•]) ∧ exchain(s2,Γ[•]) ∧ s1 6≈ s2, where
type(s1) ∈ Tcoind, forms a uniqueness problem (U). Note that in such a
problem, the two chains may not be formed upon the same equalities,
although they build the same constructor context. Similarly, if m =
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0, we obtain a ground uniqueness problem (UG). Finally, the sentence
∀s. ¬ exchain(s,Γ[•]), for type(s) ∈ Tcoind, forms an existence problem
(EX).

We generated 100 instances of each type of problem. The number
of problems solved by Vampire (V) on these problems are presented
in the following table, along with the results obtained using CVC4’s [9]
and Z3’s [50] native support for datatypes and, in CVC4’s case, for co-
datatypes:

AC ACG U UG EX
V CVC4 Z3 V CVC4 Z3 V CVC4 V CVC4 V CVC4

Axioms 65 – – 100 – – 14 – 10 – 40 –
Calculus 82 100 59 100 100 100 14 12 13 100 35 0

The number of problems solved shows that the Acycl rule performs better
than the axioms for acyclicity problems with variables. Only one of these
problems could be solved by the axiomatic approach and not by the
Acycl rule. Both approaches managed to solve all of the ground acyclicity
problems. Z3 solved all of the ground problems, performing slightly less
well on those featuring universal quantifiers. CVC4 was able to solve all
of the acyclicity problems, including those with universal quantifiers, a
notable improvement over previous results obtained on similar problems
(cf. Section ).

On uniqueness problems, the Uniq rule solved a superset of the ground
problems solved by the axiomatic approach, whereas on nonground prob-
lems each approach uniquely solved 3 problems, for a total of 17 problems
solved. Again, CVC4 performed remarkably well on ground problems,
while the presence of variables in the problem led to a marked degrada-
tion of its performance. Finally, for existence problems, the refutation
relies mostly on the Cycl axiom, which is included in the clause set in
both Vampire configurations. Yet, the purely axiomatic approach was
able to solve 6 problems that could not be solved when the Uniq rule was
activated, indicating that the rule might lead the search in a suboptimal
direction. The theory solver in CVC4 does not take into account the
existence of fixpoints for codatatypes, which is a nonground property.
Consequently, none of the existence problems were solved by CVC4.

From the results, it appears that the calculus supersedes the axiomatic
approach for problems with datatypes. For codatatypes, both approaches
solve different problems, suggesting that they should both be included
in a strategy portfolio. However, the conceptual simplicity and easy
implementation of the axiomatic approach may outweigh these differences
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in performance.

6.8 Related Work

The potential of (co)datatypes for automated reasoning has been studied
mostly in the context of satisfiability modulo theories (SMT). Datatypes
are parts of the SMT-LIB 2.6 standard [11]. They were implemented
in CVC3 by Barrett et al. [12], in Z3 [50] by de Moura, and in CVC4
by Reynolds and Blanchette [114]. The CVC4 work also includes a deci-
sion procedure for the ground theory of codatatypes. Moreover, CVC4
supports automatic structural induction [115] and dedicated reasoning
support for selectors.

Structural induction has also been added to superposition by Kersani
and Peltier [75], Cruanes [46], and Wand [136]. In unpublished work,
Wand implemented incomplete inference rules for datatypes, including
acyclicity, in his superposition prover Pirate. Robillard’s earlier Acycl
rule [118] (Chapter 5 of this thesis) has inspired our Acycl rule, but it
suffered from many forms of incompleteness. For example, given the
unsatisfiable clause set

{a ≈ c(x) ∨ p(x), ¬ p(c(a))},

the old Acycl rule derived only p(a) before reaching saturation. Another
issue concerned cycles built from multiple copies of the same premise.
Consider the unsatisfiable clause set

{a ≈ c(f(zero)), f(x) ≈ c(f(suc(x))), f(suc(suc(zero))) ≈ c(a)}.

The new rule can build a cycle of length 5 by using the second clause
twice, with x 7→ zero and x 7→ suc(zero), whereas the old rule never
reused clauses, to achieve finite branching. Our solution to achieve fi-
nite branching involves using the sub predicate, pushing the burden of
enumerating possibly infinitely many cycles onto the core superposition
calculus.

In the context of program verification, Bjørner [21] introduced a deci-
sion procedure for (co)datatypes in STeP, the Stanford Temporal Prover.
The program verification tool Dafny provides both a syntax for defining
(co)datatypes and some support for automatic (co)induction proofs [92].
Other verification tools such as Leon [129] and RADA [105] also include
(semi-)decision procedures for datatypes. We refer to Barrett et al. [12]
and Reynolds and Blanchette [114] for further discussions of related work.
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6.9 Conclusion

We presented two approaches to reason about datatypes and codatatypes
in first-order logic: an axiomatization and an extension of the superposi-
tion calculus. We established completeness results about both. We also
showed how to integrate the new inference rules in a saturation prover’s
main loop and implemented them in the Vampire prover. The empirical
results look promising, although it is not clear from our benchmarks how
often the most difficult properties—acyclicity for datatypes, existence and
uniqueness of fixpoints for codatatypes—are useful in practice.

This work is part of a wider research program that aims at bridging
the gap between automatic theorem provers and their applications to
program verification and interactive theorem proving. In future work, we
want to reconstruct the new proof rules in Isabelle, to make it possible
to enable datatype reasoning in Sledgehammer. We also believe that
further tuning and evaluations could help improve the calculus and the
heuristics.
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