
Catamorphism Generation
and Fusion Using Coq

Simon Robillard∗,
∗Univ Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France,

simon.robillard@univ-orleans.fr

Abstract—Catamorphisms are a class of higher-order func-
tions that recursively traverse an inductive data structure to
produce a value. An important result related to catamorphisms
is the fusion theorem, which gives sufficient conditions to rewrite
compositions of catamorphisms. We use the Coq proof assistant
to automatically define a catamorphism and a fusion theorem ac-
cording to an arbitrary inductive type definition. Catamorphisms
are then used to define functional specifications and the fusion
theorem is applied to derive efficient programs that match those
specifications.

Keywords—Program derivation; Category theory; Catamor-
phism; Fusion theorem; Interactive theorem prover; Coq

I. INTRODUCTION

Writing correct computer programs is not an easy task,
and the need for efficiency makes it even harder. Even in
declarative languages, that try to turn their focus on what the
program does instead of how, the search for performance often
leads to complex code, prone to hidden errors and difficult to
maintain.

Program derivation is an old idea that answers this chal-
lenge [1], [2]. Starting from an “obviously correct” expression
of a program, verified transformations are iteratively applied
in order to obtain a semantically equivalent expression with
improved efficiency. While this concept can be applied to any
paradigm, it is particularly well suited to functional program-
ming, in which one can write programs and reason about
them in the same language. This constrasts with imperative
programs, which can only be reasoned about with predicate
logic, and often require more complex mathematical reasoning
tools.

The Bird-Meertens formalism [3] provides an advanced
theoretical framework for deriving functional programs. Based
on category theory, it formalizes algebraic data types as
objects equipped with operations characterized by universal
properties [4]. These operations are used to build functional
programs, while the universal properties lead to theorems
that we can use to optimize said programs. An advantage of
this approach is the fact that theorems are applicable to any
algebraic data type. Another strong point is the relatively small
number of theorems and their wide range of application.

One of the key concepts of the Bird-Meertens formalism
is the notion of catamorphism, a higher-order function that
recursively consumes an inductive data structure to produce
a value. A strong result related to catamorphisms is the
fusion theorem [5], which gives conditions under which the
composition of an arbitrary function and a catamorphism can
be rewritten as a single catamorphism. The idea driving this

work is to automatically generate a catamorphism for any given
type in a functional language, and to use the fusion theorem
to optimize programs written using this function.

While automation of the derivation process is highly desir-
able (for example in an optimizing compiler), any non-trivial
property of a function is undecidable in the general case, and
therefore automated processes will always reach limits. In an
attempt to get the best of both worlds, we use the interactive
theorem prover Coq to conduct program derivations using
catamorphisms and the fusion theorem. In this setting, users
can rely on Coq for correctness and partial proof automation
while still being able to provide valuable guidance to the
system.

This paper is organized as follows. Section II gives a quick
presentation of the Coq proof assistant, with a special attention
to the features that are most relevant to this work. Section III
defines the concept of catamorphism for an arbitrary type T .
Section IV introduces the fusion theorem, while in section V
we show how to use this theorem to prove functional equalities
or to construct new functions. Section VI discusses related
work, and section VII brings ideas for future work before
concluding the paper.

II. A BRIEF INTRODUCTION TO COQ

Coq [6] is a proof assistant based on the Curry-Howard
correspondence [7] relating terms of a typed λ-calculus with
proof trees of a logical system in natural deduction form.
A logical formula is expressed as a type, and is said to be
true if it is inhabited, i.e. there exists a term of that type.
Proving a formula is accomplished by building a term of the
correct type. The calculus behind Coq is the Calculus of (co)-
Inductive Constructions, an extension of the initial Calculus of
Constructions [8], [9].

From a more practical side, Coq can be seen as a functional
programming language, close to OCaml or Haskell but with
a richer type system. As a matter of fact, Coq is often
used as follows: programs are developed in Coq and their
properties are also proved in Coq. This is for example the
case of the CompertC compiler, a compiler for the C language,
implemented and certified using Coq [10].

A. Types and functions

An interesting feature of the Calculus of Constructions is
that it does not distinguish between types and terms, meaning
that types have their own types, in an infinitely ascending type
hierarchy. Two types are built into the system kernel: Prop is
meant to represent logical assertions while Set is reserved



for values. Apart from those predefined types, there is the
possibility to define algebraic types using the usual constructs.

The expressivity of the type system of Coq stems from its
use of dependent products: this construct generalizes the arrow
type A → B and allows one to define the type ∀a : A, B,
where the value of B depends on a. This allows for rich type
definitions, hence expressive formulae. Since types are terms,
polymorphic types are just a particular case of dependent
products.

Functions in Coq must be total, a fact that is somewhat
balanced by the expressivity of types, as it is always possible
to refine the domain of a function to make it total. Another
approach is to use a sum type to provide a default return value.
Functions must also be guaranteed to terminate to preserve
the consistency of the system: since proofs are functions,
a non-terminating function could be used as a proof for
any formula. For functions where recursive calls are applied
only to syntactic subterms of the argument, termination is
automatically proven by the system. For more complicated
cases, the user must provide a guaranty, such as a well-founded
relation over input values.

B. Interactivity and automation

Coq also provides a proof mode; although it doesn’t add to
the expressivity of the system, this tool greatly facilitates the
process of proving formulae. It allows the user to build proofs
(terms) by using a sequential language of tactics, in a way
similar to natural deduction. Although usually unnecessary, the
proof mode can even be used to build terms of Set.

It is possible to combine tactics and even to write complex
decision procedures, thanks to a dedicated tactic language [11].
For more advanced use cases, it is possible to use the Coq
API to develop custom tactics in plugins written in OCaml.
The same API offers many other functionalities to extend the
capabilities of Coq. It should be noted that such OCaml plugins
do not endanger the consistency of the system, which relies
solely on type checking of terms and termination of functions.

Lastly, types and functions defined in Coq can be extracted
to target languages such as OCaml and Haskell. In order to
account for the simpler type systems of these languages, all
elements of Prop are lost during the extraction process as
well as some elements of dependent products. However this
functionality allows verified programs conceived in Coq to be
run efficiently on various platforms.

III. DATATYPES AND CATAMORPHISMS

A. Generalized folds

Catamorphisms are arguably the most fundamental opera-
tion over an inductive type [12], as they can be used to define
almost any function that operates by recursively traversing a
data structure. They are a generalization of fold, the familiar
higher-order function operating over lists. It is possible to
build a similar higher-order function for any inductive data
type, much in the same way that induction principles can be
constructed for any type according to its constructors. Both
catamorphisms and induction principles encapsulate the notion
of recursion over an inductive type; indeed the definition of
catamorphisms given below can be seen as a restricted version

of the general induction principle that Coq automatically
generates upon declaration of the type. While slightly less
expressive than this induction principle, the function that we
use is better suited to express program specifications and to
derive efficient implementations.

In order to illustrate the usefulness of catamorphisms,
let us give the definition of the catamorphism over a very
simple inductive type, that of natural numbers Nat ::=
zero | succ Nat. The catamorphism we get from this
definition is a higher-order function with two arguments f1 : A
and f2 : A → A. We shall use the notation ([f1, f2])Nat to
denote it, or simply ([f1, f2]) if the type of the catamorphism is
clear from the context. This function is defined by the recursive
equations:

([f1, f2]) zero = f1
([f1, f2]) succ n = f2 (([f1, f2]) n)

We can then define basic arithmetic operations as catamor-
phisms. The point-free notation we are using means that these
are unary functions: one parameter is fixed while the actual
argument is implicit.

• +n = ([n, succ])Nat

• ×n = ([zero, (+n)])Nat

We can give further examples of the usefulness of catamor-
phisms with the type of lists ListA ::= nil | cons A ListA.
As the definition of this particular catamorphism is that of the
familiar fold function, we do not recall it.

• append l = ([l, cons])ListA

• length = ([zero, succ ◦ outr])ListA

• sum = ([zero,+])ListNat

• concat = ([nil, append])ListListA

The first function returns the result of appending a list l to
the end of its argument list, while the second returns the length
of its argument, thus giving an example of a catamorphism
ranging over a different type. Note the use of outr, that returns
the second element of a pair. It is one of the fundamental
operations over product types; in this case its purpose is to
ignore the actual elements of the list. The function sum returns
the sum of a ListNat and concat concatenates a list of lists
into a single list.

Many more functions can be concisely specified as cata-
morphisms, and by combining such catamorphisms it is pos-
sible to specify non-trivial problems.

B. Definition for an arbitrary type

Having given a general idea of the concept, we will
now define catamorphisms for any inductive type T with n
constructors αi. This definition is given in the context of
the Calculus of Inductive Constructions, but can easily be
translated to any language with algebraic types.

The catamorphism, ranging over polymorphic type A, takes
n functions fi as arguments. We shall refer to these arguments



as the catamorphism parameters. Their types depend on those
of the constructors:

αi : X1 → · · · → Xm → T

fi : Y1 → · · · → Ym → A

where Yj = A if Xj = T and Yj = Xj otherwise. In addition
to these parameters, the catamorphism takes an argument of
type T , which will be refered to as the main argument. The
body of the catamorphism is built by destructing the main
argument as follows:

match x with
| · · ·
| αi x1 · · ·xp =⇒ fi y1 · · · yp
| · · ·
end

where yj is the result of a recursive call applied to xj if
xj : T , or simply xj otherwise. Termination of this function
trivially follows from the fact that recursive calls are applied
only to strict syntactic subterms of the main argument; it is
automatically proven by the checker in Coq.

C. Catamorphism over binary trees

In order to illustrate this definition, we will show what
function we obtain from the following type definition, which
describes binary trees of natural numbers.

Inductive tree :=
| null : tree
| node : nat → tree → tree → tree.

The associated catamorphism has two parameters fnull
and fnode. Its definition is given below; the keyword fix
is similar to fun but indicates a recursive function, while
the curly braces mean that argument A will be automatically
infered whenever possible, lightening the notation.

Definition cata_tree
{A : Type}
(fnull : A)
(fnode : nat → A → A → A) :=

fix f (t : tree) : A :=
match t with
| null ⇒ fnull
| node n l r ⇒ fnode n (f l) (f r)
end.

And here are a few examples of instanciated catamor-
phisms:

Definition count : tree → nat :=
cata_tree 0 (fun _ l r ⇒ 1 + l + r).

Definition height : tree → nat :=
cata_tree 0 (fun _ l r ⇒ 1 + max l r).

Definition sum : tree → nat :=
cata_tree 0 (fun n l r ⇒ n + l + r).

Definition flatten : tree → list nat :=
cata_tree [] (fun n l r ⇒ l ++ n :: r).

D. Parametric types

While this example showcases catamorphisms for sum,
product and recursive types, the Calculus of Inductive Con-
structions also includes inductive parameters and real argu-
ments in type definitions.

The value of an inductive parameter is shared among all
constructors. This is for example the case of the parameter A
in this definition of polymorphic lists:
Inductive list (A : Type) : Set :=
| nil : list A
| cons : A → list A → list A.

On the contrary, the value of a real argument can vary
across constructors. The type of length-indexed lists presented
here features one real argument of type nat.
Inductive nlist : nat → Set :=
| nnil : list 0
| ncons : ∀n, A → list n → list (n + 1).

Inductive parameters can be dealt with by simply adding an
argument to the catamorphism definition for each parameter of
the type. For real arguments we use the same solution but the
additional arguments must be a part of the fixpoint, since their
values can change with every recursive call. Accordingly, re-
cursive calls inside the body must have the correct arguments.

With this last feature, we are able to automatically generate
a catamorphism for any inductive type definable in the context
of the Calculus of Inductive Constructions. Catamorphism
generation is however disabled for types in Prop. Elimination
of arguments in Prop is only allowed for functions ranging
over Prop (proofs), and there is little interest in using cata-
morphisms to build proofs.

A more difficult problem arises when one needs a cata-
morphism ranging over a dependent type, such as a function
converting a list into a length-indexed list. For this we need
to change the definition so that the output type A : Type
is replaced by FA : T → Type. The type of the catamor-
phism parameters must be modified accordingly. The resulting
function is similar to the general induction principle that Coq
automatically generates upon declaration of the inductive type.
However this function is too cumbersome for most use cases
and its type does not allow us to give a useful statement of
the fusion theorem. We therefore chose to limit ourselves to
catamorphisms ranging over non-dependent types.

E. Other categorical morphisms

Despite their important role, not every recursive program
can be expressed as a catamorphism. Other categorical con-
cepts can be used to formalize patterns of recursion: paramor-
phisms, anamorphisms and hylomorphisms. Each comes with
its own universal properties and a dedicated fusion theorem [4].

One example of a function that does not fit the pattern of
recursion that we have so far is the factorial function. It is
possible, but awkward, to express it as catamorphism:
Definition factorial : nat → nat :=
compose snd
(cata_nat (0, 1)

(fun x ⇒ let (n, m) := x
in (n + 1, (n + 1) * m))).



Since catamorphisms do not use the recursive argument of
the constructor (only the result of recursively applying some
f to it), we have to artificially keep track of it by building a
pair of natural numbers. Paramorphisms are a generalization
of catamorphisms that can be used to express functions that
recursively consume their argument, but also use its value [13].
Very little needs to be changed in our machinery to generate
their definition: the body of the function is defined exactly
as before, except that for each constructor argument xj : T ,
the corresponding f is applied to both xj itself and the result
of a recursive call applied to xj (therefore a paramorphism
parameter has one more argument for each recursive construc-
tor argument than the corresponding catamorphism parameter).
We can now express the factorial function in a much more
elegant manner.

Definition factorial’ : nat → nat :=
para_nat 1 (fun n m ⇒ (n + 1) * m).

The definition of the fusion theorem given in section IV can
be adapted in the same way so that its conclusion applies to
paramorphisms.

Anamorphisms, also called unfolds, are the converse of
catamorphisms: from a value, they generate a recursive data
structure. While not quite as natural a programming pattern,
they can be used to provide elegant solutions to some prob-
lems [14]. Their implementation in a functional language
requires the use of a boolean predicate as a stopping condition
(or more generally, a n-valued function used to choose from
the n constructors at each iteration). In a lazy language,
anamorphisms can even be used to define functions that gener-
ate infinite objects. In the Calculus of Constructions however,
inductive and co-inductive objects live in two separate worlds.
Implementing anamorphisms in Coq would require that the
user provide a termination guaranty for each anamorphism
instance, thus making their use impractical. While the termi-
nation policy of Coq frees us from verifying some strictness
conditions otherwise needed to apply fusion theorems, it
also comes with some limitations to the expressivity of the
functions we are able to define. Those same limitations prevent
us from implementing hylomorphisms, functions that are con-
structed by composing a catamorphism and an anamorphism.

IV. FUSION THEOREM

The fusion theorem (also called promotion by some au-
thors) gives the conditions under which the composition of
an arbitrary function h and a catamorphism can be rewritten
as a single catamorphism. In real-world applications, such a
rewriting leads to the program using one less intermediate data
structure. At a minimum, this saves valuable allocation time,
and in cases where the size of the intermediate data structure
is larger than both the input and the output, this can reduce
the asymptotic complexity of the function. This result has been
called “the most useful tool in the arsenal of techniques for
program derivation” [3]. While it can be seen as a single law in
a categorical setting, we need to instantiate it for each inductive
type for use in the context of our calculus. Here is how we
define the statement of the theorem for an arbitrary type T :

H1 ∧ · · · ∧Hn =⇒ h ◦ ([f1, · · · , fn])T = ([g1, · · · , gn])T

The types of the n hypotheses Hi are again shaped accord-
ing to the types of the constructors αi.

αi : X1 → · · · → Xm → T

Hi : ∀x1 · · ·xm, gi (y1 · · · ym) = h (fi x1 · · ·xm)

where yj = h (xj) if Xj = T and yj = xj otherwise.

Note that while the conclusion of the theorem above is
written in point-free notation, we cannot use the same notation
in Coq. The definition of equality in Coq is not extensional,
meaning that it differentiates between two implementations
of a same function. We could axiomatize the extensionality
lemma ∀x, f x = g x =⇒ f = g, but it is preferable to
simply use a pointwise notation and have the conclusion read

∀t : T, h (([f1, · · · , fn]) t) = ([g1, · · · , gn]) t

Having formulated the statement of the theorem (its type),
we need to provide a proof term. It would be feasible to
build the proof term directly, again using the type constructor
to guide the formation of the term. However this would
require reimplementing some functionalities already offered
by tactics. Instead, the proof term is built internally by the
plugin very much like a user would, using the proof mode
and a combination of tactics. The proof of each instance of
the theorem is straightforward and follows the same pattern:
it is carried out inductively on t, each inductive case being
concluded with the appropriate hypothesis Hi.

Our plugin for Coq provides the command
Catamorphism. This command takes as only parameter
the name of an inductive type t; it adds to the environment
two new definitions, cata_t and cata_t_fusion, that
correspond respectively to the catamorphism of this type and
its fusion theorem. A similar command Paramorphism is
also available.

V. APPLICATIONS

A. Composition of maps

A simple example of a program optimization lemma is the
following, stating that the composition of two maps can be
rewritten as a single map:

∀f g, map g ◦map f = map (g ◦ f)

This lemma can be proven by inductive reasoning on
the argument. However if we observe that both map f and
map (g ◦ f) are catamorphisms, it becomes clear that the
fusion theorem is applicable here. To show how it is used,
we go back to our earlier definition of the type tree and
modify it slightly in order to make the type polymorphic, by
adding an inductive parameter. The catamorphism generated
from this new definition is itself polymorphic w.r.t. the type
of tree. We can now define map over trees:

Definition map {A B} (f : A → B) :=
cata_tree null (fun x l r ⇒ node (f x) l r).

We now want to solve the goal:

map g (map f t) = map (compose g f) t



Application of the fusion theorem yields two goals.

null = map g null

and

node ((compose g f) y0) (map g y1) (map g y2)
= map g (node (f y0) y1 y2)

Simplification of the terms reveals that these goals are triv-
ial equalities, both solved in a single step by the auto tactic,
thus completing the proof. One notable advantage of this proof
is that it doesn’t explicitely make use of inductive reasoning:
the inductive part of the proof is in fact already contained
in the fusion proof. This is worth mentioning since inductive
reasoning is often too complex for automated provers.

B. Maximum segment sum optimization

A larger example of application of the fusion theorem is
given in [12], in which a function is derived to solve the
maximum segment sum problem: given a list of integers l,
compute the maximum of the sums of all sublists of l. We
were able to formalize this derivation in Coq using our tool1,
in a way that very closely follows the proof published in the
paper. First we generate the catamorphism function for the
type of polymorphic lists, and use it to specify the problem,
using no less than eight different catamorphism instances in
the definition. Multiple transformation lemmas are then proven,
all using the fusion theorem. By application of these lemmas,
the initial specification (a function requiring cubic time and
multiple intermediate data structures) is turned into a linear
time function with only one intermediate list.

This provides a compelling example of program derivation
using catamorphism fusion. On a less positive note, it also
shows the need for user guidance in this endeavour. While in
some cases fusion conditions can be verified automatically, for
others we need to use a few key facts about the catamorphism
parameters. For example, at one point in the calculation, we
use the fact that the data type used is a monoid. Thankfully the
facts used in this case are relatively simple. Another obstacle
to automation arises when applying the derivation steps. A cost
model for functions would be useful for verifying that fusion is
indeed beneficial, or for allowing the machine to choose from
two possible expressions of a program. To further complicate
matters, some steps that we apply do not improve efficiency,
but are required anyway to conduct further rewriting. In some
instances, a calculation might require applying a fusion lemma
from right to left. It is not obvious why and when these
steps should be applied, especially in the context of automated
reasoning.

C. Constructive approach

So far we have only used the fusion theorem to prove the
equality of two expressions. A perhaps more interesting use of
the theorem is to build new expressions. For this we use the
conditions of the theorem as equations, the solutions of which
are the parameters of a catamorphism that constitutes a more
efficient implementation of the original composed function. If
we go back to composing maps, consider the following lemma:

1Source code available at http://traclifo.univ-orleans.fr/SDPP/wiki/SyDRec

∀f g, ∃x1 x2, map g ◦map f = ([x1, x2])

The logic of Coq being constructive, solving this lemma
can only be accomplished by providing concrete instances
of x1 and x2 that we can reuse to create an optimizing
rule. Existential quantification is not a built-in element of
the Calculus of Constructions, but it is represented by the
following type:

Inductive ex
(A : Type)
(P : A → Prop) : Prop :=

ex_intro : ∀x : A, P x → ex A P.

The notation exists x, P x stands in place of the term
ex A (fun (x : A) => P x). However, using this def-
inition presents a problem : due to the fact that ex is defined
in Prop, it is not possible to destruct the proposition to extract
the witness after the proof of existence has been completed.
The standard library include a similar definition in Set, named
sig. This type is commonly used to define the subset of A that
verifies P, but we can also use it to represent an existentially
quantified proposition in a way that allows us to remember
the witnesses provided during a proof. Our tool provides
some functions, notations and tactics specifically designed to
facilitate the construction and destruction of terms of this type
to carry out constructive proofs.

We can now represent the existentially quantified goal
above. To solve it, we will introduce existential variables in
the proof mode and apply the fusion lemma, which leaves us
once more with two goals to solve (presented here in a slightly
simplified form):

?1 = null

and

?2 y1 y2 y3 = node (g (f y1)) y2 y3

The first is trivially solved, at which point the value null
is associated to the existential variable ?1. For the second
goal we can see that ?2 must be a ternary function. Solving
this goal without manually giving an instance of ?2 requires
performing β-expansion. No standard tactic allows this, but
the API provides all that is needed to write custom tactics. We
provide for this purpose the tactic beta, which applies this
simple inference rule to any goal of the form f x = e:

f = λy.e[x := y]

f x = e

Three successive applications of this tactic to the goal
presented above yield the following:

?2 = (fun x1 x2 x3 ⇒ (node (g (f x1)) x2 x3)

This goal is trivially solved, giving us one instance of
?2 and allowing us to build a new catamorphism, which
happens to be precisely map (compose g f). Even in this
constructive version, we are able to completely automate the
proof using a very simple script.



VI. RELATED WORK

There have been other attempts to use the results of the
Bird-Meertens formalism beyond pen-and-paper derivations,
including for parallel software [15]. The use of a theorem
prover to provide a concrete implementation of these concepts
can also be seen in [16], where the author uses PVS to
apply hylomorphism fusion. As this particular fusion does
not necessitate verifying preconditions, it has been used in
entirely automatic tools targeting the language Haskell [17],
[18]. In [19], the author describes the implementation of this
type of fusion in a compiler for pH, an implicitely parallel
dialect of Haskell.

Long before it was formalized as a categorical concept,
hylomorphism fusion could be seen in optimizing algorithms
such as supercompilation [20], fold-unfold [1] and deforesta-
tion [21], [22].

VII. CONCLUSION AND FUTURE WORK

Writing functional programs with categorical morphisms
instead of using explicitly recursive functions provides several
benefits. It improves software design (with short, modular code
that emphasizes meaning over implementation details) while
exposing strong algebraic properties of the algorithms. Thanks
to fusion theorems, this approach does not hinder performance.
On the contrary, it may be used to discover elegant and efficient
algorithms.

We showed how to define a catamorphism function and
a fusion theorem for any inductive data type, including those
with dependent products in their definition; we also illustrated
the use of catamorphisms to specify problems, the resulting
programs being often very short and easy to understand. The
fusion theorem can then be used to prove that another, more
efficient catamorphism is extensionally equal to that specifica-
tion; it can also be used to construct such a fast implementation
by using its conditions as equations and solving them.

This process (either proving an equality or constructing
a new function) can be entirely automated for simple cases.
Complex optimizations do on the other hand necessitate human
guidance, both to construct equality rules and to apply them.

Our tool could benefit from being extended with other
results from the Bird-Meertens formalism for function cal-
culations, e.g. regarding mutually recursive functions [23] or
the representation of conditionals through distributive cate-
gories [24]. Another possible extension of this tool would be to
allow programs to be specified as relations. Much theoretical
work has been done in this direction [25] and Coq makes
it possible to formalize relations. Many problems that are
not easily specified as functions (non-deterministic problems,
optimization problems, converses. . . ) could then be studied.
Translating the ideas of this calculs of relations into the world
of Coq presents challenges, but it would enable the derivation
of many interesting programs.

ACKNOWLEDGEMENTS

This work is partly supported by the PaPDAS project
funded by ANR (France, ANR-2010-INTB-0205-02) and JST
(Japan, 10102704).

REFERENCES

[1] R. M. Burstall and J. Darlington, “A transformation system for devel-
oping recursive programs,” Journal of the ACM (JACM), vol. 24, no. 1,
pp. 44–67, 1977.

[2] J. Backus, “Can programming be liberated from the von Neumann
style?: a functional style and its algebra of programs,” Communications
of the ACM, vol. 21, no. 8, pp. 613–641, 1977.

[3] R. Bird and O. De Moor, The algebra of programming. Prentice Hall,
1997.

[4] E. Meijer, M. Fokkinga, and R. Paterson, “Functional programming
with bananas, lenses, envelopes and barbed wire,” in Functional Pro-
gramming Languages and Computer Architecture. Springer, 1991, pp.
124–144.

[5] G. Malcolm, “Data structures and program transformation,” Science of
computer programming, vol. 14, no. 2, pp. 255–279, 1990.

[6] Y. Bertot and P. Castéran, Interactive theorem proving and program de-
velopment: Coq’Art: the calculus of inductive constructions. Springer,
2004.

[7] W. A. Howard, “The formulae-as-types notion of construction,” in To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, J. P. Seldin and J. R. Hindley, Eds. Academic Press, 1980,
pp. 479–490.

[8] T. Coquand and G. Huet, “The calculus of constructions,” Information
and computation, vol. 76, no. 2, pp. 95–120, 1988.

[9] C. Paulin-Mohring, Inductive definitions in the system Coq rules and
properties. Springer, 1993.

[10] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107–115, 2009.

[11] D. Delahaye, “A tactic language for the system Coq,” in Logic for
Programming and Automated Reasoning (LPAR), vol. 1955. Springer,
2000, pp. 85–95.

[12] J. Gibbons, “Calculating functional programs,” in Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction.
Springer, 2002, pp. 151–203.

[13] L. Meertens, “Paramorphisms,” Formal Aspects of Computing, vol. 4,
no. 5, pp. 413–424, 1992.

[14] J. Gibbons and G. Jones, “The under-appreciated unfold,” in Interna-
tional Conference on Functional Programming. ACM, 1998, pp. 273–
279.

[15] B. J. Alexander and A. L. Wendelborn, “Automated transformation
of BMF programs,” in Workshop on Object Systems and Software
Architectures (2004: Victor Harbor, South Australia), 2004.

[16] N. Shankar, “Steps towards mechanizing program transformations using
PVS,” Science of Computer Programming, vol. 26, no. 1, pp. 33–57,
1996.

[17] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi, “A calculational fusion
system HYLO,” 1997.

[18] F. Domínguez and A. Pardo, “Exploiting algebra/coalgebra duality for
program fusion extensions,” in Proceedings of the Eleventh Workshop
on Language Descriptions, Tools and Applications. ACM, 2011, p. 6.

[19] J. B. Schwartz et al., “Eliminating intermediate lists in pH,” Master’s
thesis, Massachusetts Institute of Technology, 1999.

[20] V. F. Turchin, “The concept of a supercompiler,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 8, no. 3, pp.
292–325, 1986.

[21] P. Wadler, “Deforestation: Transforming programs to eliminate trees,”
Theoretical computer science, vol. 73, no. 2, pp. 231–248, 1990.

[22] S. D. Marlow, “Deforestation for higher-order functional programs,”
Ph.D. dissertation, University of Glasgow, 1995.

[23] M. M. Fokkinga, “Law and order in algorithmics,” Ph.D. dissertation,
University of Twente, 1992.

[24] J. Robin and B. Cockett, “Conditional control is not quite categorical
control,” in IV Higher Order Workshop, Banff 1990. Springer, 1991,
pp. 190–217.

[25] R. C. Backhouse, P. Hoogendijk, E. Voermans, and J. van der Woude,
“A relational theory of datatypes,” Eindhoven University of Technology,
Dept. of Mathematics and Computer Science, Tech. Rep., 1992.


