
Post-doctoral researcher position
Verified data structures for term indexing

February 2, 2023

Keywords: automated theorem proving; program verification; term indexing;
algorithms; logic

1 Research domain
Computation over terms and syntactic expressions is a fundamental operation
in computer science, particularly in application domains that rely on mathemat-
ical or logical abstractions, such as functional or logic programming languages,
automated deduction, rewriting, or symbolic computing. Some programs in
these applications deal with a large number of terms, and therefore rely on
term indexing data structures and algorithms that are essential to their perfor-
mance [7]. These data structures are used to quickly retrieve, among a large
number of recorded terms, those that satisfy a proprerty, typically unifiability
with a given term. These techniques may thus be used to find rewrite rules
that can be applied to a term, or to find inference rules that can be applied
to a formula. In these applications, the indexes can sometimes contain thou-
sands or even millions or candidates, their optimisation is therefore key to the
overall performance of the system. However these algorithms are complex and
their implementations may contain faults that are difficult to detect and lead
to incorrect behaviors.

2 Goal
The aim of this project is to formally verify term indexing algorithms from the
literature, using a proof assistant such as Coq [1] or Isabelle [5]. Verifying algo-
rithms in various domains of applications is a standard use of proof assistants,
but until now, term indexing data structures and algorithms have not been the
object of such work. Although the literature gives some argument as to the
correctness of these algorithms, those arguments are typically less detailed than
required for a mechanized proof. By providing a formal verification, this project
will precisely outline properties of term indexing algorithms that are not always
explicitly defined in the literature.

1



After the verification phase, the code extraction capabilities of the proof
assistant [4] will be leveraged to generate a certified software library for term
indexing. Special attention will be paid, as early as the formal description of
the algorithm, to the performance of extracted code.

3 Methodology and existing work
The project will first require identifying target data structures from the litera-
ture. The Handbook of Automated Reasoning includes a chapter [7] that surveys
numerous term indexing techniques (path indexing, discrimination trees, code
trees, substitution trees, etc.) This source is an excellent starting point for this
research, however it is not exhaustive and we will have to take into account
some techniques that are not mentioned, notably some more recent optimiza-
tions (e.g., relational path indexing [6]). We will categorize algorithms according
to whether or not they lend themselves to an implemention in a purely func-
tional language, as this characteristic plays an important role for verification.
Those algorithms that are suited to purely functional implementation will be
the first target for verification, as they lend themselves more naturally to spec-
ification in a proof assistant. After verifying these algorithms, we will target
fundamentally imperative algorithms and find the best way to represent them
in a proof assistant, and to extract efficient code. After verification and code
extraction, we will compare the generated code to state-of-the-art non-verified
implementations. The aim of this comparison is to test the correctness of these
implementations against a verified reference, as well as to measure the perfor-
mance (index creation time, retrieval time, memory usage) of our code against
optimized implementations.

Existing libraries offer formalizations of the mathematical notions that are
needed to specify term indexing algorithms (terms, substitutions, unification,
etc.) The Archive of Formal Proofs notably offers some Isabelle modules on
the meta-theory of logic [2], including a formalization of first-order terms and
operations on them, while the CoLoR library [3] for Coq describes the theory
of rewriting.

4 Candidate profile
This position is open to candidates holding a PhD in computer science or equiv-
alent, or close to the completion date of their PhD. The succesfull candidate
will demonstrate scientific skills in one or more of these domains:

• interactive theorem proving

• program verification

• algorithms

• application domains of term indexing techniques (automated deduction,
rewriting, functional or logic programming languages, etc.)

2



5 Position
The position is an 18 month contract at Université de Montpellier. The salary
before taxes is between 2674€ and 2762€, depending on the candidate’s ex-
perience. The hiree will work with the MaREL research team, in the LIRMM
research department, where they will collaborate with members of the team
working on automated deduction and prover implementation. The working lan-
guage can be either French or English.

To apply, please send a CV, research statement, and up to 3 recommanda-
tion letters to Simon Robillard (simon.robillard@umontpellier.fr). Prior
inquiries about the position are welcome.

References
[1] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development: Coq’Art: the Calculus of Inductive Constructions. Springer,
2004.

[2] Jasmin Christian Blanchette. Formalizing the metatheory of logical calculi
and automatic provers in isabelle/hol (invited talk). In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pages 1–13, 2019.

[3] Frédéric Blanqui and Adam Koprowski. CoLoR: A Coq library on well-
founded rewrite relations and its application to the automated verification
of termination certificates. Mathematical Structures in Computer Science,
21(04):827–859, 2011.

[4] Pierre Letouzey. Extraction in Coq: an overview. In Conference on Com-
putability in Europe, pages 359–369. Springer, 2008.

[5] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a
proof assistant for higher-order logic, volume 2283 of LNCS. Springer, 2002.

[6] Alexandre Riazanov and Andrei Voronkov. Efficient instance retrieval with
standard and relational path indexing. In Automated Deduction–CADE-
19: 19th International Conference on Automated Deduction, Miami Beach,
FL, USA, July 28–August 2, 2003. Proceedings 19, pages 380–396. Springer,
2003.

[7] R. Sekar, I.V. Ramakrishnan, and Andrei Voronkov. Term indexing. In
Handbook of Automated Reasoning, pages 1853–1964. Elsevier, 2001.

3


