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Description

Automated invariant generation is a key step towards the automatization of
program verification. To verify that a program is correct (i.e., satisfies its
specification), that program must be annotated with properties that remain
true throughout its execution, the invariants [3]. This can be done manually,
but it is a tedious and difficult task, it is thus necessary to automate it to
open the way to better scaling and usability of verification techniques.

Large language models (LLM) have lately had a dramatic impact in
the domain of language processing, with excellent results on varied tasks,
including in the domain of programming languages [1]. The ability of LLM
to produce statements from a given context seems well suited to producing
program invariants [5], however LLM do not rely on language semantics,
and it is therefore unlikely that they would produce correct invariants on
their own. On the other hand, there exist tools for automated deduction
(automated theorem provers, SMT solvers, etc.) that can be used to check
whether a given formula is an invariant [6]. The aim of this internship
is to combine the statistical approach of LLM and automated deduction
techniques in a novel algorithm to analyze programs and generate their
invariants. The LLM will generate candidates that will be checked by
automated deduction. Correct invariants will be output, whereas others
will lead to the production of a counter-example that will help the LLM
improve its answer.
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Tasks

The intern will carry out the following tasks:

1. creating a set of training data consisting of annotated programs (with
verification conditions and the invariants needed to verify them), e.g.,
based on programs used in automated verification competitions [4, 2];

2. choosing and training a LLM to generate invariants;

3. developing an algorithm that combines generation via LLM with automated
deduction, in order to generate, verify and refine invariants;

4. evaluating the proposed algorithm.

Skills

The candidate must be pursuing a master’s degree in computer science or
equivalent, and must have an interest in machine learning as well as in logic
and program verification. Programming skills are necessary to implement
the proposed solution. The working language can be either English or
French.

Practical Information

The internship will take place at LIRMM, the research department in computer
science, robotics and microelectronics of the university of Montpellier, France.
Its duration is five months. The internship is compensated according to the
requirements of French legislation. The internship will be supervised by:

• Simon Robillard (research teamMaREL) simon.robillard@lirmm.fr

• Maximos Skandalis (research team Texte) maximos.skandalis@lirmm.fr
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